Loading [MathJax]/jax/output/SVG/config.js
Journal of Computational and Engineering Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Comp. Eng. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Computational and Engineering Mathematics, 2014, Volume 1, Issue 1, Pages 3–16 (Mi jcem35)  

This article is cited in 15 scientific papers (total in 15 papers)

Survey Articles

The theory of optimal measurements

A. L. Shestakov, A. V. Keller, G. A. Sviridyuk

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: The mathematical model (MM) of the measuring transducer (MT) is discussed. The MM is intended for restoration of deterministic signals distorted by mechanical inertia of the MT, resonances in MT's circuits and stochastic perturbations. The MM is represented by the Leontieff type system of equations, reflecting the change in the state of MT under useful signal, deterministic and stochastic perturbations; algebraic system of equations modelling observations of distorted signal; and the Showalter – Sidorov initial condition. In addition the MM of the MT includes a cost functional. The minimum point of a cost functional is a required optimal measurement. Qualitative research of the MM of the MT is conducted by the methods of the degenerate operator group's theory. Namely, the existence of the unique optimal measurement is proved. This result corresponds to input signal without stochastic perturbation. To consider stochastic perturbations it is necessary to introduce so called Nelson – Gliklikh derivative for random process. In conclusion of article observations of "noises" (random perturbation, especially "white noise") are under consideration.
Keywords: mathematical model of the measuring transducer, the Leontieff type system, the Showalter – Sidorov condition, cost functional, the Nelson – Gliklikh derivative, «white noise».
Received: 20.04.2014
Bibliographic databases:
Document Type: Article
MSC: 49J15
Language: English
Citation: A. L. Shestakov, A. V. Keller, G. A. Sviridyuk, “The theory of optimal measurements”, J. Comp. Eng. Math., 1:1 (2014), 3–16
Citation in format AMSBIB
\Bibitem{SheKelSvi14}
\by A.~L.~Shestakov, A.~V.~Keller, G.~A.~Sviridyuk
\paper The theory of optimal measurements
\jour J. Comp. Eng. Math.
\yr 2014
\vol 1
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/jcem35}
\zmath{https://zbmath.org/?q=an:1343.49005}
\elib{https://elibrary.ru/item.asp?id=23395649}
Linking options:
  • https://www.mathnet.ru/eng/jcem35
  • https://www.mathnet.ru/eng/jcem/v1/i1/p3
  • This publication is cited in the following 15 articles:
    1. E. A. Soldatova, A. V. Keller, “Numerical algorithm and computational experiments for one linear stochastic Hoff model”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 17:2 (2024), 83–95  mathnet  crossref
    2. M. A. Sagadeeva, “Zadacha optimalnogo dinamicheskogo izmereniya s multiplikativnym vozdeistviem v prostranstvakh differentsiruemykh «shumov»”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:4 (2024), 651–664  mathnet  crossref
    3. E. V. Bychkov, S. A. Zagrebina, A. A. Zamyshlyaeva, A. V. Keller, N. A. Manakova, M. A. Sagadeeva, G. A. Sviridyuk, “Razvitie teorii optimalnykh dinamicheskikh izmerenii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:3 (2022), 19–33  mathnet  crossref
    4. M. A. Sagadeeva, “Postroenie nablyudeniya v modeli Shestakova–Sviridyuka pri ego iskazhenii mnogomernym «belym shumom»”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 12:4 (2020), 41–50  mathnet  crossref
    5. M. A. Sagadeeva, E. V. Bychkov, O. N. Tsyplenkova, “The Pyt'ev–Chulichkov method for constructing a measurement in the Shestakov–Sviridyuk model”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:4 (2020), 81–93  mathnet  crossref
    6. A. V. Panyukov, Ya. A. Mezal, “Parametricheskaya identifikatsiya kvazilineinogo raznostnogo uravneniya”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 11:4 (2019), 32–38  mathnet  crossref
    7. M. A. Sagadeeva, “Postroenie nablyudeniya dlya zadachi optimalnogo dinamicheskogo izmereniya po iskazhennym dannym”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:2 (2019), 82–96  mathnet  crossref  elib
    8. A. V. Panyukov, Ya. A. Mezaal, “Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:1 (2018), 35–43  mathnet  crossref  elib
    9. E. Yu. Mashkov, “Stochastic Leontief type equations with impulse actions”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:2 (2018), 58–72  mathnet  crossref  elib
    10. M. A. Sagadeeva, A. V. Generalov, “Numerical solution for non-stationary linearized Hoff equation defined on geometrical graph”, J. Comp. Eng. Math., 5:3 (2018), 61–74  mathnet  crossref  mathscinet  elib
    11. M. A. Sagadeeva, “Vyrozhdennye potoki razreshayuschikh operatorov dlya nestatsionarnykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 9:1 (2017), 22–30  mathnet  crossref  elib
    12. M. A. Sagadeeva, “Mathematical bases of optimal measurements theory in nonstationary case”, J. Comp. Eng. Math., 3:3 (2016), 19–32  mathnet  crossref  mathscinet  elib
    13. A. V. Keller, A. A. Ebel, “Chislennyi metod resheniya zadach smeshannogo upravleniya dlya sistem leontevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 37–45  mathnet  crossref  elib
    14. A. L. Shestakov, G. A. Sviridyuk, M. D. Butakova, “The mathematical modelling of the production of construction mixtures with prescribed properties”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:1 (2015), 100–110  mathnet  crossref  elib
    15. T. A. Vereschagina, M. M. Yakupov, V. K. Khen, “Mathematical model of a successful stock market game”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:1 (2015), 128–131  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of Computational and Engineering Mathematics
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :150
    References:66
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025