Abstract:
In this work we researched domain splitting of self-adjoint elliptic pseudodifferential operator. In particular the Laplace – Beltrami operator in the space of smooth differential k-forms defined on a smooth compact oriented Riemannian manifold without boundary be such operator. This result can be used in model with Sobolev type equations.
Keywords:
differential k-forms, Riemannian manifold, Sobolev type model, the direct sum of subspaces.
Citation:
D. E. Shafranov, “The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator”, J. Comp. Eng. Math., 2:3 (2015), 60–64
\Bibitem{Sha15}
\by D.~E.~Shafranov
\paper The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator
\jour J. Comp. Eng. Math.
\yr 2015
\vol 2
\issue 3
\pages 60--64
\mathnet{http://mi.mathnet.ru/jcem21}
\crossref{https://doi.org/10.14529/jcem150306}
\elib{https://elibrary.ru/item.asp?id=24505465}
Linking options:
https://www.mathnet.ru/eng/jcem21
https://www.mathnet.ru/eng/jcem/v2/i3/p60
This publication is cited in the following 4 articles:
O. G. Kitaeva, “Eksponentsialnye dikhotomii stokhasticheskikh uravnenii sobolevskogo tipa”, J. Comp. Eng. Math., 9:3 (2022), 3–19
O. G. Kitaeva, “Eksponentsialnye dikhotomii odnogo neklassicheskogo uravneniya v prostranstvakh differentsialnykh form na dvumernom tore s “shumami””, J. Comp. Eng. Math., 6:3 (2019), 26–38
D. E. Shafranov, “Chislennoe reshenie uravneniya Barenblatta – Zheltova – Kochinoi s additivnym “belym shumom” v prostranstvakh differentsialnykh form na tore”, J. Comp. Eng. Math., 6:4 (2019), 31–43
O. G. Kitaeva, D. E. Shafranov, G. A. Sviridyuk, “Eksponentsialnye dikhotomii v modeli Barenblatta–Zheltova–Kochinoi v prostranstvakh differentsialnykh form s «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:2 (2019), 47–57