News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2022, Issue 6, Pages 76–91
DOI: https://doi.org/10.35330/1991-6639-2022-6-110-76-91
(Mi izkab515)
 

This article is cited in 1 scientific paper (total in 1 paper)

Information Technologies and Telecommunications

Ontophylogenetic algorithms for the synthesis of intellectual phenotypes of software agents for use in tasks of multigenerational optimization of control neurocognitive architectures

A. Z. Apsheva, B. A. Atalikovb, S. A. Kankulovb, D. A. Malyshevb, Z. A. Sundukovb, A. Z. Enesb

a Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 360010, Russia, Nalchik, 2 Balkarov streetk
b Institute of Computer Science and Problems of Regional Management – branch of Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 360000, Russia, Nalchik, 37-a I. Armand street
References:
Abstract: The purpose of the study is to develop methods and algorithms for the ontophylogenetic synthesis of artificial intelligence software agents based on multi-agent neurocognitive architectures that allow combining the situationality and explanatory power of reinforcement learning and the adaptive efficiency and stability of genetic algorithms. An algorithm for synthesizing the phenotypes of control systems of intelligent agents based on the data of their genotypes has been developed. A software package for simulating the processes of ontophylogenetic synthesis of multi-agent neurocognitive architectures has been also developed. Experiments were carried out to create phenotypes of intelligent agents based on the developed genotypes of control multi-agent neurocognitive architectures.
Keywords: artificial intelligence, multi-agent systems, genetic algorithms, ontophylogenetic learning.
Received: 01.12.2022
Revised: 08.12.2022
Accepted: 15.12.2022
Bibliographic databases:
Document Type: Article
UDC: 004.89
MSC: 68T42
Language: Russian
Citation: A. Z. Apshev, B. A. Atalikov, S. A. Kankulov, D. A. Malyshev, Z. A. Sundukov, A. Z. Enes, “Ontophylogenetic algorithms for the synthesis of intellectual phenotypes of software agents for use in tasks of multigenerational optimization of control neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2022, no. 6, 76–91
Citation in format AMSBIB
\Bibitem{ApsAtaKan22}
\by A.~Z.~Apshev, B.~A.~Atalikov, S.~A.~Kankulov, D.~A.~Malyshev, Z.~A.~Sundukov, A.~Z.~Enes
\paper Ontophylogenetic algorithms for the synthesis of intellectual phenotypes
of software agents for use in tasks of multigenerational optimization
of control neurocognitive architectures
\jour News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
\yr 2022
\issue 6
\pages 76--91
\mathnet{http://mi.mathnet.ru/izkab515}
\crossref{https://doi.org/10.35330/1991-6639-2022-6-110-76-91}
\elib{https://elibrary.ru/item.asp?id=https://www.elibrary.ru/item.asp?id=50127956}
\edn{https://elibrary.ru/BMMNPR}
Linking options:
  • https://www.mathnet.ru/eng/izkab515
  • https://www.mathnet.ru/eng/izkab/y2022/i6/p76
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :14
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024