News of the Kabardin-Balkar scientific center of RAS
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


News of the Kabardin-Balkar scientific center of RAS, 2014, Issue 5, Pages 17–27 (Mi izkab383)  

MATHEMATICS. MATHEMATIC MODELING

Convergence of difference schemes for the diffusion equation in porous media with structures having fractal geometry

M. H. Shhanukov-Lafisheva, A. R. Bechelovab, Z. V. Beshtokovab

a Institute of Computer Science and Problems of Regional Management of KBSC of the Russian Academy of Sciences, 360000, KBR, Nalchik, 37-a, I. Armand street
b Kabardin-Balkar State University named after H. M. Berbekov, 360004, KBR, Nalchik, 173, Chernyshevsky street
References:
Abstract: In this paper a priori estimate , which implies the convergence of a solution of the problem to the solution of the differential problem in the uniform metric with speed $O(h^2+\tau)$ is acquired by the method of stationary perturbations.
Keywords: differential equation of diffusion, existence and uniqueness, a priori estimate, unique solvability and convergence.
Received: 02.06.2014
Bibliographic databases:
Document Type: Article
UDC: 514.7
Language: Russian
Citation: M. H. Shhanukov-Lafishev, A. R. Bechelova, Z. V. Beshtokova, “Convergence of difference schemes for the diffusion equation in porous media with structures having fractal geometry”, News of the Kabardin-Balkar scientific center of RAS, 2014, no. 5, 17–27
Citation in format AMSBIB
\Bibitem{ShhBecBes14}
\by M.~H.~Shhanukov-Lafishev, A.~R.~Bechelova, Z.~V.~Beshtokova
\paper Convergence of difference schemes
for the diffusion equation in porous media with
structures having fractal geometry
\jour News of the Kabardin-Balkar scientific center of RAS
\yr 2014
\issue 5
\pages 17--27
\mathnet{http://mi.mathnet.ru/izkab383}
\elib{https://elibrary.ru/item.asp?id=22296783}
Linking options:
  • https://www.mathnet.ru/eng/izkab383
  • https://www.mathnet.ru/eng/izkab/y2014/i5/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :25
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024