University proceedings. Volga region. Physical and mathematical sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



University proceedings. Volga region. Physical and mathematical sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


University proceedings. Volga region. Physical and mathematical sciences, 2009, Issue 4, Pages 27–38 (Mi ivpnz709)  

Mathematics

On the problem of stabilizing the movements of mechanical systems constrained by geometric and kinematic servo connections

M. Kh. Teshaev

Bukhara Technological University of Food and Light Industry, Bukhara
References:
Abstract: In work the equations of motion of the mechanical systems constrained by geometrical and kinematical constraints of the first and second sort are deduced. The obvious kind of forces of reactions of servo constraints is received, and also questions of stability of system under the relation of the variety defined by servo constraints are considered.
Keywords: servo constraint, (A)-moving, parametrical clearing, compulsions of reactions, high-speed parameters, clearing parameters, quasicoordinate, quasispeed, the stability, not indignant movement.
UDC: 531.31+62-50
Language: Russian
Citation: M. Kh. Teshaev, “On the problem of stabilizing the movements of mechanical systems constrained by geometric and kinematic servo connections”, University proceedings. Volga region. Physical and mathematical sciences, 2009, no. 4, 27–38
Citation in format AMSBIB
\Bibitem{Tes09}
\by M.~Kh.~Teshaev
\paper On the problem of stabilizing the movements of mechanical systems constrained by geometric and kinematic servo connections
\jour University proceedings. Volga region. Physical and mathematical sciences
\yr 2009
\issue 4
\pages 27--38
\mathnet{http://mi.mathnet.ru/ivpnz709}
Linking options:
  • https://www.mathnet.ru/eng/ivpnz709
  • https://www.mathnet.ru/eng/ivpnz/y2009/i4/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    University proceedings. Volga region. Physical and mathematical sciences
    Statistics & downloads:
    Abstract page:24
    Full-text PDF :9
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024