University proceedings. Volga region. Physical and mathematical sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



University proceedings. Volga region. Physical and mathematical sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


University proceedings. Volga region. Physical and mathematical sciences, 2009, Issue 1, Pages 69–86 (Mi ivpnz671)  

Mathematics

Surfaces in the commutative nonlinear geometry of 3-dimensional Galilean space-time

I. A. Dolgarev

Penza State University, Penza
References:
Abstract: For vectors determine not linear and commutative operation and Galilean inner product of vector. Formulas to differentiate vector functions are obtained. Equations straight line and plane to be not linear. Obtained normal, middle and complete curvature surface. Have a examples.
Keywords: not linear and commutative geometry of Galiley, curvature surface.
UDC: 514.7
Language: Russian
Citation: I. A. Dolgarev, “Surfaces in the commutative nonlinear geometry of 3-dimensional Galilean space-time”, University proceedings. Volga region. Physical and mathematical sciences, 2009, no. 1, 69–86
Citation in format AMSBIB
\Bibitem{Dol09}
\by I.~A.~Dolgarev
\paper Surfaces in the commutative nonlinear geometry of 3-dimensional Galilean space-time
\jour University proceedings. Volga region. Physical and mathematical sciences
\yr 2009
\issue 1
\pages 69--86
\mathnet{http://mi.mathnet.ru/ivpnz671}
Linking options:
  • https://www.mathnet.ru/eng/ivpnz671
  • https://www.mathnet.ru/eng/ivpnz/y2009/i1/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    University proceedings. Volga region. Physical and mathematical sciences
    Statistics & downloads:
    Abstract page:40
    Full-text PDF :13
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024