University proceedings. Volga region. Physical and mathematical sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



University proceedings. Volga region. Physical and mathematical sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


University proceedings. Volga region. Physical and mathematical sciences, 2013, Issue 2, Pages 108–119 (Mi ivpnz415)  

Mathematics

On the uniqueness of the solution of Gahov equation for the functions in the Janowski classes

T. V. Zharkova, A. V. Kazantsev

Kazan (Volga region) Federal University, Kazan
References:
Abstract: Let $\Delta=\{(\alpha,\beta)\in R^2 : \alpha+\beta >0,\alpha\leq1,\beta\leq1\}$ and $(\alpha,\beta)\in\Delta$. Janowski class $S^*[\alpha,\beta]$ is the class of the functions f holomorphic in $D$ and so that $f(0)=f'(0)-1=0$ and $\zeta f'(\zeta)/f(\zeta)\prec(1+\beta\zeta)/(1-\alpha\zeta)$, $\zeta \in D$. Let $\tilde{S}^*[\alpha,\beta]$ be the subclass of with the condition $f''(0)=0$ defining the zero root of the Gahov equation $f''(\zeta)/f'(\zeta)=2\bar{\zeta}/(1-|\zeta|^2)$. The domain of uniqueness for the family $\tilde{S}^*[\alpha,\beta]$, $(\alpha,\beta)\in\Delta$, is the set $\tilde{\Delta} \subset \Delta$ such that for any $(\alpha,\beta)\in \tilde{\Delta}$ and $f\in\tilde{S}^*[\alpha,\beta]$ the Gahov equation has the unique root. The maximal (on inclusion) domain of uniqueness for the family $\tilde{S}^*[\alpha,\beta]$, $(\alpha,\beta)\in\Delta$, is find. Let $\Delta'=\Delta'_0 \cup \Delta_1 \cup \Delta'_2$, where $\Delta'_0=\{(\alpha,\beta) \in \Delta : |2\beta-3\alpha| \leq 3, 3(\alpha+\beta)\leq 2\}$, $\Delta_1=\{(\alpha,\beta) \in \Delta : 2\beta-3\alpha > 3\}$ и $\Delta'_2=\{(\alpha,\beta) \in \Delta : 2\beta-3\alpha < -3, \alpha<\alpha(\beta),\beta \in(-1,-1/5)\}$, and $\alpha(\beta)=1-(1-\beta)^3/[(1+\beta)^2-16\beta]$, $\beta \in (-1,0)$. Theorem. The set is the maximal domain of uniqueness for the family of the classes $\tilde{S}^*[\alpha,\beta]$, $(\alpha,\beta)\in\Delta$. Thus, the article adduces the full and complete solution for the problem posed and particularly solved in 1998 by the second author. The impact of the result: 1) two-parametrical series of the uniqueness conditions is obtained; 2) new property of the well-known classes of the univalent functions is established. The proving method is based on the use of the Schwarz lemma, the calculation of the sharp constant in the estimate of the left-hand side of Gahov equation, and the analysis of the dependence of the constant mentioned on the parameters.
Keywords: univalent functions, Janowski classes, Gahov equation.
Document Type: Article
UDC: 517.546.1
Language: Russian
Citation: T. V. Zharkova, A. V. Kazantsev, “On the uniqueness of the solution of Gahov equation for the functions in the Janowski classes”, University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 2, 108–119
Citation in format AMSBIB
\Bibitem{ZhaKaz13}
\by T.~V.~Zharkova, A.~V.~Kazantsev
\paper On the uniqueness of the solution of Gahov equation for the functions in the Janowski classes
\jour University proceedings. Volga region. Physical and mathematical sciences
\yr 2013
\issue 2
\pages 108--119
\mathnet{http://mi.mathnet.ru/ivpnz415}
Linking options:
  • https://www.mathnet.ru/eng/ivpnz415
  • https://www.mathnet.ru/eng/ivpnz/y2013/i2/p108
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    University proceedings. Volga region. Physical and mathematical sciences
    Statistics & downloads:
    Abstract page:41
    Full-text PDF :12
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024