University proceedings. Volga region. Physical and mathematical sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



University proceedings. Volga region. Physical and mathematical sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


University proceedings. Volga region. Physical and mathematical sciences, 2013, Issue 4, Pages 101–118 (Mi ivpnz381)  

Mathematics

Stability of evolutionary systems

I. V. Boykov, J. F. Zakharova, A. A. Dmitrieva

Penza State University, Penza
References:
Abstract: Background. Recently the evolutionary systems have gained growing significance in various fields of science and technology. A crucial example of the evolutionary systems are the various sectors of economy, separate enterprises, computing centers and networks thereof, human organism, cells, organism's systems, various populations. Thereby it is topical to research dynamic processes progressing in the evolutionary systems and, first of all, to research the stability of the system itself. In the article, by the example of models of interaction of the environment with pollution and the models of immunology, the authors research the stability of the evolutionary systems, described by Lotka Volterra equations. The article describes the application of therapy in the base model of immunology. Materials and methods. The researchers use the modification of Lyapunov first method, intended for research of stability of non-autonomous differential equation systems. For this purpose the authors build a family of linear operators and determine the stability of differential equation system by signs of operators' logarithmical norms. Results. The researchers obtained the criteria of stability and asymptotic stability according to Lyapunov of the fixed points in the model of interaction of the environment with pollution. The article adduces a qualitative research of a number of models of immunology. The authors investigated the application of therapy in the base model of immunology. Conclusions. The suggested method may be used in research of a wide class of evolutionary systems.
Keywords: evolutionary systems, dynamic process, stability, Lotka Volterra equations, models of immunology.
Document Type: Article
UDC: 518.5
Language: Russian
Citation: I. V. Boykov, J. F. Zakharova, A. A. Dmitrieva, “Stability of evolutionary systems”, University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 4, 101–118
Citation in format AMSBIB
\Bibitem{BoyZakDmi13}
\by I.~V.~Boykov, J.~F.~Zakharova, A.~A.~Dmitrieva
\paper Stability of evolutionary systems
\jour University proceedings. Volga region. Physical and mathematical sciences
\yr 2013
\issue 4
\pages 101--118
\mathnet{http://mi.mathnet.ru/ivpnz381}
Linking options:
  • https://www.mathnet.ru/eng/ivpnz381
  • https://www.mathnet.ru/eng/ivpnz/y2013/i4/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    University proceedings. Volga region. Physical and mathematical sciences
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024