|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
Solving of the problem of acoustic wave diffraction on a system of hard screens by the Galerkin method
N. V. Romanova, A. A. Tsupak Penza State University, Penza
Abstract:
Background. The aim of this work is to numerically study the scalar problem of flat acoustic wave scattering by an obstacle of complex shape consisting of infinitely thin acoustically hard screens. Material and methods. The problem is considered in the quasiclassical statement; the original boundary value problem for the Helmholtz equation in unbounded space is reduced to a system of integral equations over bounded manifolds of dimension 2. To find the numerical solution to the problem of diffraction, the Galerkin method is applied using piecewise linear basis functions. Results. The projection method for solving the system of integral equations of the scalar diffraction problem was developed and implemented; several computational experiments were performed. Conclusions. The proposed numerical method is an effective way to find approximate solutions to the scalar problems of diffraction on hard screens of arbitrary shape; it can also be used to solve problems of a wider range.
Keywords:
scalar diffraction problem, integral equations, acoustically hard screens, Galerkin method.
Citation:
N. V. Romanova, A. A. Tsupak, “Solving of the problem of acoustic wave diffraction on a system of hard screens by the Galerkin method”, University proceedings. Volga region. Physical and mathematical sciences, 2016, no. 2, 54–66
Linking options:
https://www.mathnet.ru/eng/ivpnz244 https://www.mathnet.ru/eng/ivpnz/y2016/i2/p54
|
Statistics & downloads: |
Abstract page: | 51 | Full-text PDF : | 17 | References: | 28 |
|