Izvestiya VUZ. Applied Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izvestiya VUZ. Applied Nonlinear Dynamics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, Volume 31, Issue 2, Pages 128–142
DOI: https://doi.org/10.18500/0869-6632-003034
(Mi ivp522)
 

BIFURCATION IN DYNAMICAL SYSTEMS. DETERMINISTIC CHAOS. QUANTUM CHAOS.

Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form

V. M. Anikin

Saratov State University, Russia
References:
Abstract: Purpose of the article is to illustrate the genesis, meaning and significance of the functional Schroder equation, introduced in the theory of iterations of rational functions, for the theory of deterministic chaos by analytical calculations of exact trajectory solutions, invariant densities and Lyapunov exponents of one-dimensional chaotic maps. We demonstrate the method for solving the functional Schroder equation for various chaotic maps by passing to a topologically conjugate mappings, for which finding the exact trajectory solution is a simpler mathematical procedure. Results of the analytical solution of the Schroder equation for 12 chaotic mappings of various types and the calculation of the corresponding expressions for exact trajectory solutions, invariant densities and Lyapunov exponents are presented. Conclusion is made about the methodological expediency of formulating and solving the Schroder equations by the study of the dynamics of one-dimensional chaotic mappings.
Keywords: iteration theory, Deterministic chaos, one-dimensional maps, Schroder equation, exact solutions.
Received: 08.01.2023
Bibliographic databases:
Document Type: Article
UDC: 530.182.2
Language: Russian
Citation: V. M. Anikin, “Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form”, Izvestiya VUZ. Applied Nonlinear Dynamics, 31:2 (2023), 128–142
Citation in format AMSBIB
\Bibitem{Ani23}
\by V.~M.~Anikin
\paper Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form
\jour Izvestiya VUZ. Applied Nonlinear Dynamics
\yr 2023
\vol 31
\issue 2
\pages 128--142
\mathnet{http://mi.mathnet.ru/ivp522}
\crossref{https://doi.org/10.18500/0869-6632-003034}
\edn{https://elibrary.ru/JVVGQR}
Linking options:
  • https://www.mathnet.ru/eng/ivp522
  • https://www.mathnet.ru/eng/ivp/v31/i2/p128
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya VUZ. Applied Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :33
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024