Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 4, Pages 89–93
DOI: https://doi.org/10.26907/0021-3446-2024-4-89-93
(Mi ivm9975)
 

Brief communications

On undecidability of unary non-nested PFP-operators for one successor function theory

V. S. Sekorin

Tver State University 33 Zhelyabova str., Tver, 170100 Russia
References:
Abstract: We investigate the decidability of first-order logic extensions. For example, it is established in A. S. Zolotov's works that a logic with a unary transitive closure operator for the one successor theory is decidable. We show that in a similar case, a logic with a unary partial fixed point operator is undecidable. For this purpose, we reduce the halting problem for the counter machine to the problem of truth of the underlying formula. This reduction uses only one unary non-nested partial fixed operator that is applied to a universal or existential formula.
Keywords: first-order logic, partial fixed point, undecidability.
Received: 11.01.2024
Revised: 11.01.2024
Accepted: 20.03.2024
Document Type: Article
UDC: 510.624
Language: Russian
Citation: V. S. Sekorin, “On undecidability of unary non-nested PFP-operators for one successor function theory”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4, 89–93
Citation in format AMSBIB
\Bibitem{Sek24}
\by V.~S.~Sekorin
\paper On undecidability of unary non-nested PFP-operators for one successor function theory
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 4
\pages 89--93
\mathnet{http://mi.mathnet.ru/ivm9975}
\crossref{https://doi.org/10.26907/0021-3446-2024-4-89-93}
Linking options:
  • https://www.mathnet.ru/eng/ivm9975
  • https://www.mathnet.ru/eng/ivm/y2024/i4/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:38
    Full-text PDF :1
    References:14
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024