|
On the absolute convergence of Fourier series of almost periodic functions
Yu. Kh. Khasanova, F. M. Talbakovb a Russian-Tajik Slavonic University, 30 M. Tursunzoda str., Dushanbe, 734025 Republic of Tajikistan
b Tajik State Pedagogical University named after S. Aenya, 121 Rudaki str., Dushanbe, 734003 Republic of Tajikistan
Abstract:
The paper investigates sufficient conditions for the absolute convergence of trigonometric Fourier series of almost-periodic functions in the sense of Besikovitch in the case when the Fourier exponents have a single limiting point at infinity. A higher-order modulus of continuity is used as a structural characteristic of the function under consideration.
Keywords:
almost-periodic Besikovitch function, Fourier series, function spectrum, Fourier coefficients, modulus of continuity, trigonometric polynomial.
Received: 10.03.2023 Revised: 11.09.2023 Accepted: 26.09.2023
Citation:
Yu. Kh. Khasanov, F. M. Talbakov, “On the absolute convergence of Fourier series of almost periodic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4, 67–79
Linking options:
https://www.mathnet.ru/eng/ivm9973 https://www.mathnet.ru/eng/ivm/y2024/i4/p67
|
Statistics & downloads: |
Abstract page: | 53 | Full-text PDF : | 1 | References: | 17 | First page: | 8 |
|