|
Sharpening of Turán-type inequality for polynomials
N. A. Rather, A. Bhat, M. Shafi University of Kashmir, Srinagar, 190006 India
Abstract:
For the polynomial $P(z) = \displaystyle\sum_{j=0}^{n} c_jz^j$ of degree $n$ having all its zeros in $|z|\leq k$, $ k\geq 1$, V. Jain in \textquotedblleft On the derivative of a polynomial\textquotedblright, Bull. Math. Soc. Sci. Math. Roumanie Tome 59, 339–347 (2016) proved that \begin{align*} \max_{|z|=1}|P^\prime(z)|\geq n\bigg(\frac{|c_0| +|c_n|k^{n+1}}{|c_0|(1+ k^{n+1}) +|c_n|(k^{n+1}+ k^{2n})}\bigg)\max_{|z|=1}|P(z)|. \end{align*} In this paper we strengthen the above inequality and other related results for the polynomials of degree $n\geq 2$.
Keywords:
polynomial, inequality, complex domain.
Received: 27.02.2023 Revised: 27.02.2023 Accepted: 29.05.2023
Citation:
N. A. Rather, A. Bhat, M. Shafi, “Sharpening of Turán-type inequality for polynomials”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4, 39–46
Linking options:
https://www.mathnet.ru/eng/ivm9971 https://www.mathnet.ru/eng/ivm/y2024/i4/p39
|
Statistics & downloads: |
Abstract page: | 37 | Full-text PDF : | 1 | References: | 9 | First page: | 6 |
|