|
Variation and $\lambda$-jump inequalities on $H^p$ spaces
S. Demir Agri Ibrahim Cecen University, Ağrı, 04100 Turkey
Abstract:
Let $\phi\in \mathscr{S}$ with $\displaystyle\int\phi (x) dx=1$, and define $$\phi_t(x)=\frac{1}{t^n}\phi \left(\frac{x}{t}\right),$$ and denote the function family $\{\phi_t\ast f(x)\}_{t>0}$ by $\Phi\ast f(x)$. Let $\mathcal{J}$ be a subset of $\mathbb{R}$ (or more generally an ordered index set), and suppose that there exists a constant $C_1$ such that $$\sum_{t\in\mathcal{J}} |\hat{\phi}_t(x)|^2<C_1$$ for all $x\in \mathbb{R}^n$. Then
i) There exists a constant $C_2>0$ such that $$\|\mathscr{V}_2(\Phi\ast f)\|_{L^p}\leq C_2\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1$$ for all $f\in H^p(\mathbb{R}^n)$, $\dfrac{n}{n+1}<p\leq 1$.
ii) The $\lambda$-jump operator $N_{\lambda}(\Phi\ast f)$ satisfies $$\|\lambda [N_{\lambda}(\Phi\ast f)]^{1/2}\|_{L^p}\leq C_3\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1,$$ uniformly in $\lambda >0$ for some constant $C_3>0$.
Keywords:
Hardy space, variation operator, $\lambda$-jump operator.
Received: 27.02.2023 Revised: 22.03.2023 Accepted: 29.03.2023
Citation:
S. Demir, “Variation and $\lambda$-jump inequalities on $H^p$ spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4, 15–19
Linking options:
https://www.mathnet.ru/eng/ivm9968 https://www.mathnet.ru/eng/ivm/y2024/i4/p15
|
Statistics & downloads: |
Abstract page: | 37 | Full-text PDF : | 1 | References: | 10 | First page: | 10 |
|