Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 4, Pages 15–19
DOI: https://doi.org/10.26907/0021-3446-2024-4-15-19
(Mi ivm9968)
 

Variation and $\lambda$-jump inequalities on $H^p$ spaces

S. Demir

Agri Ibrahim Cecen University, Ağrı, 04100 Turkey
References:
Abstract: Let $\phi\in \mathscr{S}$ with $\displaystyle\int\phi (x) dx=1$, and define
$$\phi_t(x)=\frac{1}{t^n}\phi \left(\frac{x}{t}\right),$$
and denote the function family $\{\phi_t\ast f(x)\}_{t>0}$ by $\Phi\ast f(x)$. Let $\mathcal{J}$ be a subset of $\mathbb{R}$ (or more generally an ordered index set), and suppose that there exists a constant $C_1$ such that
$$\sum_{t\in\mathcal{J}} |\hat{\phi}_t(x)|^2<C_1$$
for all $x\in \mathbb{R}^n$. Then
i) There exists a constant $C_2>0$ such that
$$\|\mathscr{V}_2(\Phi\ast f)\|_{L^p}\leq C_2\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1$$
for all $f\in H^p(\mathbb{R}^n)$, $\dfrac{n}{n+1}<p\leq 1$.
ii) The $\lambda$-jump operator $N_{\lambda}(\Phi\ast f)$ satisfies
$$\|\lambda [N_{\lambda}(\Phi\ast f)]^{1/2}\|_{L^p}\leq C_3\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1,$$
uniformly in $\lambda >0$ for some constant $C_3>0$.
Keywords: Hardy space, variation operator, $\lambda$-jump operator.
Received: 27.02.2023
Revised: 22.03.2023
Accepted: 29.03.2023
Document Type: Article
UDC: 517
Language: Russian
Citation: S. Demir, “Variation and $\lambda$-jump inequalities on $H^p$ spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4, 15–19
Citation in format AMSBIB
\Bibitem{Dem24}
\by S.~Demir
\paper Variation and $\lambda$-jump inequalities on $H^p$ spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 4
\pages 15--19
\mathnet{http://mi.mathnet.ru/ivm9968}
\crossref{https://doi.org/10.26907/0021-3446-2024-4-15-19}
Linking options:
  • https://www.mathnet.ru/eng/ivm9968
  • https://www.mathnet.ru/eng/ivm/y2024/i4/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :1
    References:10
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024