Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 3, Pages 91–96
DOI: https://doi.org/10.26907/0021-3446-2024-3-91-96
(Mi ivm9966)
 

Brief communications

Spectral relations for a matrix model in fermionic Fock space

T. Kh. Rasulov, D. E. Ismoilova

Bukhara State University, 11 M. Ikbol str., Bukhara, 200100 Republic of Uzbekistan
References:
Abstract: We consider a matrix model ${\mathcal A}$, related to a system describing two identical fermions and one particle of another nature on a lattice, interacting via annihilation and creation operators. The problem of the study of the spectrum of a block operator matrix ${\mathcal A}$ is reduced to the investigation of the spectrum of block operator matrices of order three with a discrete variable, and relations for the spectrum, essential spectrum and point spectrum are established. Two-particle and three-particle branches of the essential spectrum of the block operator matrix ${\mathcal A}$ are singled out.
Keywords: matrix model, fermion, Fock space, spectrum, essential spectrum, point spectrum, creation operator, annihilation operator.
Received: 11.11.2023
Revised: 11.11.2023
Accepted: 26.12.2023
Document Type: Article
UDC: 517.984
Language: Russian
Citation: T. Kh. Rasulov, D. E. Ismoilova, “Spectral relations for a matrix model in fermionic Fock space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3, 91–96
Citation in format AMSBIB
\Bibitem{RasIsm24}
\by T.~Kh.~Rasulov, D.~E.~Ismoilova
\paper Spectral relations for a matrix model in fermionic Fock space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 3
\pages 91--96
\mathnet{http://mi.mathnet.ru/ivm9966}
\crossref{https://doi.org/10.26907/0021-3446-2024-3-91-96}
Linking options:
  • https://www.mathnet.ru/eng/ivm9966
  • https://www.mathnet.ru/eng/ivm/y2024/i3/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:61
    Full-text PDF :1
    References:22
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024