Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 3, Pages 50–63
DOI: https://doi.org/10.26907/0021-3446-2024-3-50-63
(Mi ivm9962)
 

Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables

V. I. Korzyukab, J. V. Rudzkoab

a Institute of Mathematics of the National Academy of Sciences of Belarus, 11 Surganov str., Minsk, 220072 Republic of Belarus
b Belarusian State University, 4 Nezavisimosti Ave., Minsk, 220030 Republic of Belarus
References:
Abstract: In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution of some integral equation. The local solvability of this equation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray–Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.
Keywords: Cauchy problem, classical solution, local solvability, global solvability, hyperbolic equation, semilinear equation, a priori estimate, fixed point principle.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Received: 17.02.2023
Revised: 28.03.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.956
Language: Russian
Citation: V. I. Korzyuk, J. V. Rudzko, “Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3, 50–63
Citation in format AMSBIB
\Bibitem{KorRud24}
\by V.~I.~Korzyuk, J.~V.~Rudzko
\paper Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 3
\pages 50--63
\mathnet{http://mi.mathnet.ru/ivm9962}
\crossref{https://doi.org/10.26907/0021-3446-2024-3-50-63}
Linking options:
  • https://www.mathnet.ru/eng/ivm9962
  • https://www.mathnet.ru/eng/ivm/y2024/i3/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :1
    References:24
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024