Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 3, Pages 15–37
DOI: https://doi.org/10.26907/0021-3446-2024-3-15-37
(Mi ivm9960)
 

Investigation of the asymptotics of the eigenvalues of a second order quasidifferential boundary value problem

M. Yu. Vatolkin

Kalashnikov Izhevsk State Technical University, 7 Studencheskaya str., Izhevsk, 426069 Russia
References:
Abstract: We construct the asymptotics of the eigenvalues for a quasidifferential Sturm–Liouville boundary value problem on eigenvalues and eigenfunctions considered on a segment $J=[a,b]$, with the boundary conditions of type I on the left – type I on the right, i.e., for a problem of the form (in the explicit form of record)
\begin{gather*} p_{22}(t)\Big(p_{11}(t)\big(p_{00}(t)x(t)\big)^{\prime} +p_{10}(t)\big(p_{00}(t)x(t)\big)\Big)^{\prime}+ p_{21}(t)\Big(p_{11}(t)\big(p_{00}(t)x(t)\big)^{\prime} +p_{10}(t)\big(p_{00}(t)x(t)\big)\Big)+ \\ +p_{20}(t)\big(p_{00}(t)x(t)\big)= -\lambda \big(p_{00}(t)x(t)\big) \ (t\in J=[a,b]),\\ p_{00}(a)x(a)=p_{00}(b)x(b)=0, \end{gather*}
The requirements for smoothness of the coefficients (i.e., functions $p_{ik}(\cdot):J\to {\mathbb R}, k\in 0:i, i\in0:2)$ in the equation are minimal, namely, these are: functions $p_{ik}(\cdot):J\to {\mathbb R}$ are such that functions $p_{00}(\cdot) $ and $ p_{22}(\cdot) $ are measurable, nonnegative, almost everywhere finite and almost everywhere nonzero, functions $p_{11}(\cdot)$ and $p_{21}(\cdot)$ are also nonnegative on segment $J$, and in addition, functions $p_{11}(\cdot) $ and $ p_{22}(\cdot) $ are essentially bounded on $J,$ functions $ \dfrac{1}{p_{11}(\cdot)}, \dfrac{p_{10}(\cdot)}{p_{11}(\cdot)}, $ $ \dfrac{p_{20}(\cdot)}{p_{22}(\cdot)}, \dfrac{p_{21}(\cdot)}{p_{22}(\cdot)}, \dfrac{1}{\min \{ p_{11}(t) p_{22}(t), 1 \}} $ are summable on segment $J.$ Function $p_{20}(\cdot)$ acts as a potential. It is proved that under the condition of nonoscillation of a homogeneous quasidifferential equation of the second order on $J,$ the asymptotics of the eigenvalues of the boundary value problem under consideration has the form
$$ \lambda_k=\big(\pi k\big)^2 \Big(D+O\big({1}\big{/}{k^2}\big)\Big) $$
as $k \rightarrow \infty,$ where $D$ is a real positive constant defined in some way.
Keywords: eigenfunction, eigenvalue, power series, estimate for coefficients, quasidifferential equation, boundary value problem, sum of series, representation of eigenfunctions as sums of power series.
Received: 13.02.2023
Revised: 30.03.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.927
Language: Russian
Citation: M. Yu. Vatolkin, “Investigation of the asymptotics of the eigenvalues of a second order quasidifferential boundary value problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3, 15–37
Citation in format AMSBIB
\Bibitem{Vat24}
\by M.~Yu.~Vatolkin
\paper Investigation of the asymptotics of the eigenvalues of a second order quasidifferential
boundary value problem
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 3
\pages 15--37
\mathnet{http://mi.mathnet.ru/ivm9960}
\crossref{https://doi.org/10.26907/0021-3446-2024-3-15-37}
Linking options:
  • https://www.mathnet.ru/eng/ivm9960
  • https://www.mathnet.ru/eng/ivm/y2024/i3/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024