Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 10, Pages 77–82
DOI: https://doi.org/10.26907/0021-3446-2023-10-77-82
(Mi ivm9943)
 

Brief communications

A block projection operator in the algebra of measurable operators

A. M. Bikchentaev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
References:
Abstract: Let $\tau$ be a faithful normal semifinite trace on a von Neumann algebra $\mathcal{M}$. We investigate the block projection operator $\mathcal{P}_n$ $(n\ge 2)$ in the ${}^*$-algebra $S(\mathcal{M}, \tau )$ of all $\tau$-measurable operators. We show that $A \leq n\mathcal{P}_n(A)$ for any operator $A\in S(\mathcal{M}, \tau)^+$. If an operator $A\in S(\mathcal{M}, \tau)^+$ is invertible in $S(\mathcal{M}, \tau)$ then $\mathcal{P}_n(A)$ is invertible in $S(\mathcal{M}, \tau)$. Consider $A=A^*\in S(\mathcal{M},\tau)$. Then (i) if $\mathcal{P}_n(A)\leq A$ $($or if $\mathcal{P}_n(A)\geq A)$ then $\mathcal{P}_n(A)= A$; (ii) $\mathcal{P}_n(A)= A$ if and only if $P_kA= AP_k$ for all $ k=1, \ldots, n$; (iii) if $A, \mathcal{P}_n(A)\in \mathcal{M}$ are projections then $\mathcal{P}_n(A)= A$. We obtain 4 corollaries. We also refined and reinforced one example from the paper “A. Bikchentaev, F. Sukochev, Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021)”.
Keywords: Hilbert space, von Neumann algebra, trace, measurable operator, block projection operator.
Received: 26.08.2023
Revised: 26.08.2023
Accepted: 26.09.2023
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. M. Bikchentaev, “A block projection operator in the algebra of measurable operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10, 77–82
Citation in format AMSBIB
\Bibitem{Bik23}
\by A.~M.~Bikchentaev
\paper A block projection operator in the algebra of measurable operators
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 10
\pages 77--82
\mathnet{http://mi.mathnet.ru/ivm9943}
\crossref{https://doi.org/10.26907/0021-3446-2023-10-77-82}
Linking options:
  • https://www.mathnet.ru/eng/ivm9943
  • https://www.mathnet.ru/eng/ivm/y2023/i10/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024