Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 10, Pages 22–35
DOI: https://doi.org/10.26907/0021-3446-2023-10-22-35
(Mi ivm9938)
 

This article is cited in 1 scientific paper (total in 1 paper)

Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain

D. K. Durdievab, J. J. Jumaevab

a Institute of Mathematics at the Academy of Sciences of the Republic of Uzbekistan, 46 University str., Tashkent, 100170 Republic of Uzbekistan
b Bukhara State University, 11 M. Ikbol str., Bukhara, 200118 Republic of Uzbekistan
Full-text PDF (408 kB) Citations (1)
References:
Abstract: In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag-Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.
Keywords: fractional derivative, inverse problem, integral equation, Fourier series, Mittag–Leffler function, fixed point theorem.
Received: 29.03.2023
Revised: 10.05.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.55
Language: Russian
Citation: D. K. Durdiev, J. J. Jumaev, “Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10, 22–35
Citation in format AMSBIB
\Bibitem{DurJum23}
\by D.~K.~Durdiev, J.~J.~Jumaev
\paper Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 10
\pages 22--35
\mathnet{http://mi.mathnet.ru/ivm9938}
\crossref{https://doi.org/10.26907/0021-3446-2023-10-22-35}
Linking options:
  • https://www.mathnet.ru/eng/ivm9938
  • https://www.mathnet.ru/eng/ivm/y2023/i10/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :24
    References:20
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024