Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 12, Pages 3–16
DOI: https://doi.org/10.26907/0021-3446-2023-12-3-16
(Mi ivm9922)
 

This article is cited in 1 scientific paper (total in 1 paper)

Convolution kernel determination problem in the third order Moore–Gibson–Thompson equation

D. K. Durdievab, A. A. Boltaevab, A. A. Rahmonovab

a Institute of Mathematics at the Academy of Sciences of the Republic of Uzbekistan, 46 University str., Tashkent, 100170 Republic of Uzbekistan
b Bukhara State University, 11 Muhammad Ikbal str., Bukhara, 200118 Republic of Uzbekistan
Full-text PDF (396 kB) Citations (1)
References:
Abstract: This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.
Keywords: MGT equation, initial-boundary value problem, inverse problem, existence, uniqueness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-914
Received: 29.03.2023
Revised: 29.03.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.55
Language: Russian
Citation: D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov, “Convolution kernel determination problem in the third order Moore–Gibson–Thompson equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12, 3–16
Citation in format AMSBIB
\Bibitem{DurBolRak23}
\by D.~K.~Durdiev, A.~A.~Boltaev, A.~A.~Rahmonov
\paper Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 12
\pages 3--16
\mathnet{http://mi.mathnet.ru/ivm9922}
\crossref{https://doi.org/10.26907/0021-3446-2023-12-3-16}
Linking options:
  • https://www.mathnet.ru/eng/ivm9922
  • https://www.mathnet.ru/eng/ivm/y2023/i12/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :40
    References:28
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024