Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 11, Pages 86–91
DOI: https://doi.org/10.26907/0021-3446-2023-11-86-91
(Mi ivm9919)
 

Brief communications

Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval

N. F. Abuzyarovaab

a Institute of Mathematics with Computing Centre -- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 112 Chernyshevsky str., Ufa, 450008 Russia
b Ufa University of Science and Technology, 32 Zaki Validi str., Ufa, 450076 Russia
References:
Abstract: In this paper we consider a weakened version of the spectral synthesis for the differentiation operator in nonquasianalytic spaces of ultradifferentiable functions. We deal with the widest possible class of spaces of ultradifferentiable functions among all known ones. Namely, these are spaces of $\Omega$-ultradifferentiable functions which have been recently introduced and explored by A.V. Abanin. For differentiation invariant subspaces in these spaces, we establlish conditions of weak spectral synthesis. As an application, we prove that a kernel of a local convolution operator admits weak spectral synthesis. We also show that a conjunction of kernels of convolution operators admits weak spectral synthesis if all generating ultradistributions have the same support equaled to $\{0\}$ and there exists one generated by an ultradistribution which characteristic function is a multiplier in the corresponding space of entire functions.
Keywords: ultradifferentiable functions, ultradistributions, Fourier-Laplace transform, invariant subspaces, spectral synthesis.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FMRS-2022-0124
Received: 03.09.2022
Revised: 20.09.2023
Accepted: 26.09.2023
Document Type: Article
UDC: 517.538: 517.982: 517.984: 517.547
Language: Russian
Citation: N. F. Abuzyarova, “Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 11, 86–91
Citation in format AMSBIB
\Bibitem{Abu23}
\by N.~F.~Abuzyarova
\paper Invariant subspaces in nonquasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 11
\pages 86--91
\mathnet{http://mi.mathnet.ru/ivm9919}
\crossref{https://doi.org/10.26907/0021-3446-2023-11-86-91}
Linking options:
  • https://www.mathnet.ru/eng/ivm9919
  • https://www.mathnet.ru/eng/ivm/y2023/i11/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025