Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 11, Pages 3–14
DOI: https://doi.org/10.26907/0021-3446-2023-11-3-14
(Mi ivm9913)
 

Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient

D. K. Durdievab, J. Z. Nuriddinovb

a V.I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, 46 University str., Tashkent, 100170 Republic of Uzbekistan
b Bukhara State University, 11 M. Ikbol str., Bukhara, 200117 Republic of Uzbekistan
References:
Abstract: We investigate the inverse problem of determining the time and space dependent kernel of the integral term in the $n$-dimensional integro-differential equation of heat conduction from the known solution of the Cauchy problem for this equation. First, the original problem is replaced by the equivalent problem where an additional condition contains the unknown kernel without integral. We study the question of the uniqueness of the determining of this kernel. Next, assuming that there are two solutions $k_1(x,t)$ and $k_2(x,t)$ of the stated problem, it is formed an equation for the difference of this solution. Further research is being conducted for the difference $k_1(x,t)-k_2(x,t)$ of solutions of the problem and using the techniques of integral equations estimates. It is shown that if the unknown kernel $k(x,t)$ can be represented as $k(x,t)=\displaystyle\sum\limits_{i=0}^Na_i(x)b_i(t)$, then $k_1(x,t)\equiv k_2(x,t)$. Thus, the theorem on the uniqueness of the solution of the problem is proved.
Keywords: inverse problem, parabolic equation, Cauchy problem, integral equation, uniqueness.
Received: 29.03.2023
Revised: 29.03.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.55
Language: Russian
Citation: D. K. Durdiev, J. Z. Nuriddinov, “Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 11, 3–14
Citation in format AMSBIB
\Bibitem{DurNur23}
\by D.~K.~Durdiev, J.~Z.~Nuriddinov
\paper Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 11
\pages 3--14
\mathnet{http://mi.mathnet.ru/ivm9913}
\crossref{https://doi.org/10.26907/0021-3446-2023-11-3-14}
Linking options:
  • https://www.mathnet.ru/eng/ivm9913
  • https://www.mathnet.ru/eng/ivm/y2023/i11/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025