Processing math: 100%
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 8, Pages 23–34
DOI: https://doi.org/10.26907/0021-3446-2023-8-23-34
(Mi ivm9905)
 

Infinitely many solutions for Schrödinger-Kirchhoff-type equations involving the fractional p(x,)-Laplacian

M. Mirzapour

Department of Mathematics, Farhangian University, Tehran, Iran
References:
Abstract: The aim of this paper is to study the existence of infinitely many solutions for Schrödinger-Kirchhoff-type equations involving nonlocal p(x,)-fractional Laplacian
M(σp(x,y)(u))Lp(x,)K(u)=λ|u|q(x)2u+μ|u|γ(x)2u in Ω,u(x)=0 in RNΩ,
where
σp(x,y)(u)=Q|u(x)u(y)|p(x,y)p(x,y)K(x,y)dxdy,
Lp(x,)K is a nonlocal operator with singular kernel K, Ω is a bounded domain in RN with Lipschitz boundary Ω, M:R+R is a continuous function, q,γC(Ω) and λ, μ are two parameters. Under some suitable assumptions, we show that the above problem admits infinitely many solutions by applying the Fountain Theorem and the Dual Fountain Theorem.
Keywords: fractional p(x,)-Laplacian, Schrödinger-Kirchhoff-type problem, variational methods.
Received: 12.11.2022
Revised: 12.11.2022
Accepted: 29.03.2023
Document Type: Article
UDC: 517
Language: Russian
Citation: M. Mirzapour, “Infinitely many solutions for Schrödinger-Kirchhoff-type equations involving the fractional p(x,)-Laplacian”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 8, 23–34
Citation in format AMSBIB
\Bibitem{Mir23}
\by M.~Mirzapour
\paper Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 8
\pages 23--34
\mathnet{http://mi.mathnet.ru/ivm9905}
\crossref{https://doi.org/10.26907/0021-3446-2023-8-23-34}
Linking options:
  • https://www.mathnet.ru/eng/ivm9905
  • https://www.mathnet.ru/eng/ivm/y2023/i8/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :21
    References:31
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025