Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 7, Pages 13–22
DOI: https://doi.org/10.26907/0021-3446-2023-7-13-22
(Mi ivm9894)
 

Fatou's theorem for $A(z)$-analytic functions

N. M. Zhabborova, B. E. Husenovb

a Belorussian-Uzbek joint intersectoral institute of applied technical qualifications in Tashkent, 4 Karamurt-1 str., Kibraisky district, Tashkent region, 100071 Republic of Uzbekistan
b Bukhara State University, 11 Muhammad Ikbal str., Bukhara, 705018 Republic of Uzbekistan
References:
Abstract: We consider $A(z)-$analytic functions in case when $A(z)$ is an anti-analytic function. This paper investigates the behavior near the boundary of the derivative of the function, $A(z)-$analytic inside the $A(z)-$lemniscate and with a bounded change of it at the boundary. Thus, this paper introduces the complex Lipschitz condition for $A(z)-$analytic functions and proves Fatou's theorem for $A(z)-$analytic functions.
Keywords: $A(z)$-analytic function, $A(z)$-lemniscate, “radial” convergence in $A(z)$-lemniscate, the complex Lipschitz condition for $A(z)$-analytic function, Fatou's theorem for $A(z)$-analytic function.
Received: 29.03.2023
Revised: 07.05.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.55
Language: Russian
Citation: N. M. Zhabborov, B. E. Husenov, “Fatou's theorem for $A(z)$-analytic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7, 13–22
Citation in format AMSBIB
\Bibitem{ZhaHus23}
\by N.~M.~Zhabborov, B.~E.~Husenov
\paper Fatou's theorem for $A(z)$-analytic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 7
\pages 13--22
\mathnet{http://mi.mathnet.ru/ivm9894}
\crossref{https://doi.org/10.26907/0021-3446-2023-7-13-22}
Linking options:
  • https://www.mathnet.ru/eng/ivm9894
  • https://www.mathnet.ru/eng/ivm/y2023/i7/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :12
    References:25
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024