Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 6, Pages 67–73
DOI: https://doi.org/10.26907/0021-3446-2023-6-67-73
(Mi ivm9889)
 

To the calculation of the mapping degree of finite dimensional vector field

E. Mukhamadiev, A. N. Naimov

Vologda State University, 15 Lenin str., Vologda, 160000 Russia
References:
Abstract: In this paper we propose and justify a new method calculation of the mapping degree of $n$-dimensional vector field on the unit sphere of the space $\mathrm{R}^n$, $n\geq 2$. The essence of the proposed method is that the calculation of the mapping degree of vector field is reduced to the calculation of the mapping degree of its tangent component on the components of the set, where the vector field has an obtuse angle with the unit vector field. In the special case, for the gradient of a smooth positively homogeneous function, we derive a formula for calculation of the mapping degree through the Eulerian characteristic of the set of points where the function is negative.
Keywords: vector field, mapping degree of vector field, positive homogeneous function, Eulerian characteristic.
Funding agency Grant number
Russian Science Foundation 23-21-00032
Received: 23.10.2022
Revised: 23.10.2022
Accepted: 21.12.2022
Document Type: Article
UDC: 517.988
Language: Russian
Citation: E. Mukhamadiev, A. N. Naimov, “To the calculation of the mapping degree of finite dimensional vector field”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 6, 67–73
Citation in format AMSBIB
\Bibitem{MuhNai23}
\by E.~Mukhamadiev, A.~N.~Naimov
\paper To the calculation of the mapping degree of finite dimensional vector field
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 6
\pages 67--73
\mathnet{http://mi.mathnet.ru/ivm9889}
\crossref{https://doi.org/10.26907/0021-3446-2023-6-67-73}
Linking options:
  • https://www.mathnet.ru/eng/ivm9889
  • https://www.mathnet.ru/eng/ivm/y2023/i6/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024