Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 6, Pages 31–40
DOI: https://doi.org/10.26907/0021-3446-2023-6-31-40
(Mi ivm9886)
 

The structure of differential invariants for a free symmetry group action

A. A. Magazev, I. V. Shirokov

Omsk State Technical University, 11 Mira Ave., Omsk, 644050 Russia
References:
Abstract: In the paper, we consider the problem of describing the general structure of differential invariants for transformation groups that act freely and reguralry. We formulate two theorems describing the structures of differential invariants for intransitive and transitive free actions, respectively. In both cases it is shown that the differential invariants can be expressed in terms of the symbols of right-invariant vector fields. Finally, we discuss prospects for solving the problem considered for more general group actions.
Keywords: symmetry group, differential invariant, free action.
Funding agency Grant number
Russian Science Foundation 22-21-00035
Siberian Branch of Russian Academy of Sciences I.5.1, проект № 0314-2019-0020
Received: 18.09.2022
Revised: 18.09.2022
Accepted: 21.12.2022
Document Type: Article
UDC: 512.816: 512.816
Language: Russian
Citation: A. A. Magazev, I. V. Shirokov, “The structure of differential invariants for a free symmetry group action”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 6, 31–40
Citation in format AMSBIB
\Bibitem{MagShi23}
\by A.~A.~Magazev, I.~V.~Shirokov
\paper The structure of differential invariants for a free symmetry group action
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 6
\pages 31--40
\mathnet{http://mi.mathnet.ru/ivm9886}
\crossref{https://doi.org/10.26907/0021-3446-2023-6-31-40}
Linking options:
  • https://www.mathnet.ru/eng/ivm9886
  • https://www.mathnet.ru/eng/ivm/y2023/i6/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :17
    References:16
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024