Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 5, Pages 58–70
DOI: https://doi.org/10.26907/0021-3446-2023-5-58-70
(Mi ivm9879)
 

A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results

Y. Touail

Université Sultan Moulay Slimane, BP. 25000, Beni-Mellal, Morocco
References:
Abstract: In this paper, without using neither the compactness nor the uniform convexity, some fixed point theorems are proved by using a binary relation in the setting of a new class of spaces called $T$-partial metric spaces. This class of spaces can be considered the first generalization of metric spaces such that the generated topology is a Hausdorff topology. Our theorems generalize and improve very recent fixed point results in the literature. Finally, we show the existence of a solution for a class of differential equations under new weak conditions.
Keywords: fixed point, $T$-partial metric space, uniform convexity, $T_2$ separation axiom, integral equation.
Received: 02.08.2022
Revised: 12.01.2023
Accepted: 29.03.2023
Document Type: Article
UDC: 517
Language: Russian
Citation: Y. Touail, “A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5, 58–70
Citation in format AMSBIB
\Bibitem{Tou23}
\by Y.~Touail
\paper A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 5
\pages 58--70
\mathnet{http://mi.mathnet.ru/ivm9879}
\crossref{https://doi.org/10.26907/0021-3446-2023-5-58-70}
Linking options:
  • https://www.mathnet.ru/eng/ivm9879
  • https://www.mathnet.ru/eng/ivm/y2023/i5/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :13
    References:20
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024