Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 5, Pages 20–33
DOI: https://doi.org/10.26907/0021-3446-2023-5-20-33
(Mi ivm9875)
 

Reconstruction of the Cauchy–Riemann operator by complex integration operators along circles

N. P. Volchkovaa, Vit. V. Volchkovb

a Donetsk National Technical University, 58 Artioma str., Donetsk, 283000 DPR
b Donetsk State University, 24 Universitetskaya str., Donetsk, 283001 DPR
References:
Abstract: One of the well-known integral conditions for a function to be holomorphic is the following classical G. Morera theorem: if a function $f:\mathcal{O}\to \mathbb{C}$ is continuous in a domain $\mathcal{O}\subset\mathbb{C}$ and has zero integrals over all rectifiable contours in $\mathcal{O}$, then $f$ is holomorphic in $\mathcal{O}$. This fact allows for far-reaching generalizations in various directions. In particular, if a continuous function $f:\mathbb{C}\to \mathbb{C}$ has zero integrals over all circles of fixed radii $r_1$ and $r_2$ in $\mathbb{C}$ and $r_1/r_2$ is not the ratio of two zeros of the Bessel function $J_{1}$, then $f$ is holomorphic on the whole complex plane (entire). An example of the function $\frac{\partial}{\partial {z}}\big(J_0(\lambda |z|)\big)$ with a suitable parameter $\lambda$ shows that this condition on $r_1/r_2$ cannot be omitted. In this article, we study the problem of recovering the derivative $\frac{\partial f}{\partial \overline{z}}$ from given contour integrals of $f$. Our main result is Theorem 4, which gives a new formula for finding $\frac{\partial f}{\partial \overline{z}}$ in terms of integrals of $f$ over circles with the above condition. The key step in the proof of Theorem 4 is the expansion of the Dirac delta function in terms of a system of radial distributions supported in $\overline{B}_r$ biorthogonal to some system of spherical functions. A similar approach can be used to invert a number of convolution operators with radial distributions in $\mathcal{E}'(\mathbb{R}^n)$.
Keywords: Cauchy–Riemann operator, Bessel functions, Fourier transform, convolution.
Received: 16.08.2022
Revised: 04.10.2022
Accepted: 21.12.2022
Document Type: Article
UDC: 517.5
Language: Russian
Citation: N. P. Volchkova, Vit. V. Volchkov, “Reconstruction of the Cauchy–Riemann operator by complex integration operators along circles”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5, 20–33
Citation in format AMSBIB
\Bibitem{VolVol23}
\by N.~P.~Volchkova, Vit.~V.~Volchkov
\paper Reconstruction of the Cauchy--Riemann operator by complex integration operators along circles
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 5
\pages 20--33
\mathnet{http://mi.mathnet.ru/ivm9875}
\crossref{https://doi.org/10.26907/0021-3446-2023-5-20-33}
Linking options:
  • https://www.mathnet.ru/eng/ivm9875
  • https://www.mathnet.ru/eng/ivm/y2023/i5/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :9
    References:18
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024