Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 4, Pages 15–26
DOI: https://doi.org/10.26907/0021-3446-2023-4-15-26
(Mi ivm9866)
 

Square function characterizations of real and ergodic $H^1$ spaces

S. Demir

Agri Ibrahim Cecen University, 04100 Ağrı, Turkey
References:
Abstract: Let $(n_k)$ be a lacunary sequence with no non-trivial common divisor and $f\in L^1(\mathbb{R})$. Define the square function
$$Sf(x)=\left(\sum_{k=1}^{\infty}\left|\frac{1}{n_{k+1}}\int_{0}^{n_{k+1}}f(x-t) dt-\frac{1}{n_k}\int_{0}^{n_k}f(x-t) dt\right|^2\right)^{1/2}.$$
We show that there exist constants $A$ and $B$ such that
$$\|f\|_{L^1(\mathbb{R})}\leq A\|Sf\|_{L^1(\mathbb{R})} \text{and} \|f\|_{H^1(\mathbb{R})}\leq B\|Sf\|_{L^1(\mathbb{R})}$$
for all $f\in L^1(\mathbb{R})$.\Let $(X,\mathscr{B} ,\mu ,\tau )$ be an ergodic, measure preserving dynamical system with $(X,\mathscr{B} ,\mu )$ a totally $\sigma$-finite measure space. Let us consider the usual ergodic averages
$$A_nf(x)=\frac{1}{n}\sum_{i=0}^{n-1}f(\tau^ix),$$
and define the ergodic square function
$$\mathcal{S}f(x)=\left(\sum_{k=1}^{\infty}\left|A_{n_{k+1}}f(x)-A_{n_k}f(x)\right|^2\right)^{1/2}.$$
We also show that
$$\|f\|_{L^1(X)}\leq A\|\mathcal{S}f\|_{L^1(X)} \text{and} \|f\|_{H^1(X)}\leq B\|\mathcal{S}f\|_{L^1(X)}$$
for all $f\in L^1(X)$, where $H^1(X)$ denotes the ergodic Hardy space. Combining these results with the author's earlier results we also conclude that the square function $Sf$ characterizes the real Hardy space $H^1(\mathbb{R})$, and the ergodic square function $\mathcal{S}f$ characterizes the ergodic Hardy space $H^1(X)$ when the sequence $(n_k)$ is lacunary.
Keywords: ergodic square function, Hardy space, $H^1$ space, ergodic Hardy space, ergodic $H^1$ space, ergodic average, characterization.
Received: 07.06.2022
Revised: 07.06.2022
Accepted: 28.09.2022
Document Type: Article
UDC: 517
Language: Russian
Citation: S. Demir, “Square function characterizations of real and ergodic $H^1$ spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4, 15–26
Citation in format AMSBIB
\Bibitem{Dem23}
\by S.~Demir
\paper Square function characterizations of real and ergodic $H^1$ spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 4
\pages 15--26
\mathnet{http://mi.mathnet.ru/ivm9866}
\crossref{https://doi.org/10.26907/0021-3446-2023-4-15-26}
Linking options:
  • https://www.mathnet.ru/eng/ivm9866
  • https://www.mathnet.ru/eng/ivm/y2023/i4/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024