Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 2, Pages 3–25
DOI: https://doi.org/10.26907/0021-3446-2023-2-3-25
(Mi ivm9850)
 

This article is cited in 1 scientific paper (total in 1 paper)

Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

Zh. I. Abdullaeva, A. M. Khalkhuzhaevb, I. A. Khujamiyorova

a Samarkand State University, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
b Institute of Mathematics named after V.I.Romanovsky AS RUz, 81 Mirzo Ulugbek Ave., Tashkent, 100170 Republic of Uzbekistan
Full-text PDF (526 kB) Citations (1)
References:
Abstract: We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K}),$ $\mathbf{K}\in\mathbb{T}^3$ associated to a system of three particles (two particle are fermions with mass $1$ and third one is an another particle with mass $m=1/\gamma<1$ ) interacting through zero range pairwise potential $\mu>0$ on the three-dimensional lattice $\mathbb{Z}^3.$ It is proved that for $\gamma \in (1,\gamma_0)$ ($\gamma_0\approx 4,7655$) the operator $H_{\mu,\gamma}(\boldsymbol{\pi}),$ $\boldsymbol{\pi}=(\pi,\pi,\pi),$ has no eigenvalue and has only unique eigenvalue with multiplicity three for $\gamma>\gamma_0$ lying right of the essential spectrum for sufficiently large $\mu.$
Keywords: Schrödinger operator on a lattice, Hamiltonian, zero-range, fermion, eigenvalue, quasimomentum, invariant subspace, Faddeev operator.
Received: 18.03.2022
Revised: 18.03.2022
Accepted: 28.09.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 2, Pages 1–22
DOI: https://doi.org/10.3103/S1066369X23020019
Document Type: Article
UDC: 517.946
Language: Russian
Citation: Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. A. Khujamiyorov, “Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 2, 3–25; Russian Math. (Iz. VUZ), 67:2 (2023), 1–22
Citation in format AMSBIB
\Bibitem{AbdKhaKhu23}
\by Zh.~I.~Abdullaev, A.~M.~Khalkhuzhaev, I.~A.~Khujamiyorov
\paper Existence condition of an eigenvalue of the three particle Schr\"{o}dinger operator on a lattice
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 2
\pages 3--25
\mathnet{http://mi.mathnet.ru/ivm9850}
\crossref{https://doi.org/10.26907/0021-3446-2023-2-3-25}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 2
\pages 1--22
\crossref{https://doi.org/10.3103/S1066369X23020019}
Linking options:
  • https://www.mathnet.ru/eng/ivm9850
  • https://www.mathnet.ru/eng/ivm/y2023/i2/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :29
    References:37
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024