Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 1, Pages 3–24
DOI: https://doi.org/10.26907/0021-3446-2023-1-3-24
(Mi ivm9844)
 

On the spectrum of a quasidifferential boundary value problem of the second order

M. Yu. Vatolkin

Kalashnikov Izhevsk State Technical University, 7 Studencheskaya str., Izhevsk, 426069 Russia
References:
Abstract: The structure of the spectrum of a quasidifferential boundary value problem of the second order is studied, i.e. $(_{P}^{ 2}x)(t)=-\lambda( _{P}^{ 0}x)(t) (t\in[a,b], \lambda \in {\mathbb R})$ (the coefficients in the equation are real valued functions) with given homogeneous boundary conditions at the ends of this segment, i.e. ${ }_P^{ 0}x(a)={ }_P^{ 0}x(b)=0.$ First, we consider the auxiliary Cauchy problem with the real parameter $\beta$ in the coefficient $p_{20}(t)$ of the equation, namely, $p_{22}(t) \left(p_{11}(t)v'(t) \right)' +(p_{20}(t)+\beta)v(t)=0,$ $ v(a)=0, p_{11}(a)v'(a)=1.$ In terms of the solution to this problem, a fundamental theorem on the continuous or discrete real spectrum of the boundary value problem is formulated (see Theorem 1). Examples are given to illustrate the cases of the continuous spectrum and discrete spectrum for the boundary value problem under consideration.
Keywords: quasiderivatives, quasidifferential equation, two-point quasidifferential boundary value problem, Cauchy problem, real parameter, sequence of solutions, sum of series, eigenvalue, eigenfunction, spectrum of boundary value problem, discrete spectrum, continuous spectrum, root of equation, Taylor series.
Received: 24.01.2022
Revised: 15.12.2022
Accepted: 21.12.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 1, Pages 1–19
DOI: https://doi.org/10.3103/S1066369X23010061
Document Type: Article
UDC: 517.927
Language: Russian
Citation: M. Yu. Vatolkin, “On the spectrum of a quasidifferential boundary value problem of the second order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1, 3–24; Russian Math. (Iz. VUZ), 67:1 (2023), 1–19
Citation in format AMSBIB
\Bibitem{Vat23}
\by M.~Yu.~Vatolkin
\paper On the spectrum of a quasidifferential boundary value problem of the second order
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 1
\pages 3--24
\mathnet{http://mi.mathnet.ru/ivm9844}
\crossref{https://doi.org/10.26907/0021-3446-2023-1-3-24}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 1
\pages 1--19
\crossref{https://doi.org/10.3103/S1066369X23010061}
Linking options:
  • https://www.mathnet.ru/eng/ivm9844
  • https://www.mathnet.ru/eng/ivm/y2023/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :29
    References:34
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024