Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 12, Pages 34–56
DOI: https://doi.org/10.26907/0021-3446-2022-12-34-56
(Mi ivm9835)
 

Stability criterion for linear differential equations with a delayed argument

S. A. Gusarenko

Perm State National Research University, 7 Henkel str., Perm, 614068 Russia
References:
Abstract: A semi-effective criterion for the stability of linear differential equations $\mathcal{L} x=f$ with retarded argument is proposed, the general solution of which is represented by the Cauchy formula
$$ x(t)=C(t,a)x(a)+\int\limits_a^tC(t,s) f(s) ds. $$
The Cauchy function satisfies the integral identity
$$ C(t,s) = U(t,s)U(s,s)^{-1} - \int\limits_s^tC(t,\varsigma)\mathcal{L}_s U(\cdot, s)(\varsigma)U(s,s)^{-1} d\varsigma, $$
where $\mathcal{L}_s$ is the contraction of the operator $\mathcal{L}$ by the interval $[s,\infty)$. Choosing the function $U$ so that the function is $\mathcal{L}_s U(\cdot, s) U(s,s)^{-1}$ is small enough, it is possible to obtain estimates of the Cauchy function $C(t,s)$, which guarantee the stability of the differential equation.
Keywords: stability of differential equations with a delayed argument, stability criterion of differential equations, signs of stability of differential equations, Cauchy function, Cauchy formula.
Received: 05.03.2022
Revised: 05.03.2022
Accepted: 29.06.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 12, Pages 33–52
DOI: https://doi.org/10.3103/S1066369X22120076
Document Type: Article
UDC: 517.929
Language: Russian
Citation: S. A. Gusarenko, “Stability criterion for linear differential equations with a delayed argument”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 12, 34–56; Russian Math. (Iz. VUZ), 66:12 (2022), 33–52
Citation in format AMSBIB
\Bibitem{Gus22}
\by S.~A.~Gusarenko
\paper Stability criterion for linear differential equations with a delayed argument
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 12
\pages 34--56
\mathnet{http://mi.mathnet.ru/ivm9835}
\crossref{https://doi.org/10.26907/0021-3446-2022-12-34-56}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 12
\pages 33--52
\crossref{https://doi.org/10.3103/S1066369X22120076}
Linking options:
  • https://www.mathnet.ru/eng/ivm9835
  • https://www.mathnet.ru/eng/ivm/y2022/i12/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :20
    References:8
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024