Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 10, Pages 66–72
DOI: https://doi.org/10.26907/0021-3446-2022-10-66-72
(Mi ivm9820)
 

On a class of Holder matrix functions of the second order admitting an effective factorization

S. N. Kiyasov

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
References:
Abstract: Holder matrix-functions of the second order are considered. We assume that one element is arbitrary, diagonal elements do not vanish on the contour, and the choice of the last element determines the possibility of their effective factorization.
Keywords: matrix-function, linear conjugation problem, factorization.
Received: 22.12.2021
Revised: 22.12.2021
Accepted: 08.04.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 10, Pages 56–61
DOI: https://doi.org/10.3103/S1066369X22100073
Document Type: Article
UDC: 517.544
Language: Russian
Citation: S. N. Kiyasov, “On a class of Holder matrix functions of the second order admitting an effective factorization”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 10, 66–72; Russian Math. (Iz. VUZ), 66:10 (2022), 56–61
Citation in format AMSBIB
\Bibitem{Kiy22}
\by S.~N.~Kiyasov
\paper On a class of Holder matrix functions of the second order admitting an effective factorization
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 10
\pages 66--72
\mathnet{http://mi.mathnet.ru/ivm9820}
\crossref{https://doi.org/10.26907/0021-3446-2022-10-66-72}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 10
\pages 56--61
\crossref{https://doi.org/10.3103/S1066369X22100073}
Linking options:
  • https://www.mathnet.ru/eng/ivm9820
  • https://www.mathnet.ru/eng/ivm/y2022/i10/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :45
    References:21
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024