Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 10, Pages 33–41
DOI: https://doi.org/10.26907/0021-3446-2022-10-33-41
(Mi ivm9818)
 

On a class Noether theory of two-dimensonal Singular integral equations of the Michlin–Calderon–Zygmund over a bounded domain

G. Dzhangibekova, G. M. Qozievb, B. Yogibekova

a Tajik National University, 17 Rudaki Ave., Dushanbe, 734025 Republic of Tajikistan
b Institute of Tourism, Entrepreneurship and Service, 48/5 Borbard Ave., Dushanbe, 734055 Republic of Tajikistan
References:
Abstract: In this paper established effective necessary and sufficient conditions for the Noetherian property of two-dimensional singular integral equations of the Mikhlin–Calderon–Zygmund type in Lebesgue spaces with a weight, and given a formula for calculating the index.
Keywords: singular integral operators, symbol of operator, operator noetherian, operator's index.
Received: 27.11.2021
Revised: 27.11.2021
Accepted: 08.04.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 10, Pages 25–32
DOI: https://doi.org/10.3103/S1066369X22100048
Document Type: Article
UDC: 517.968
Language: Russian
Citation: G. Dzhangibekov, G. M. Qoziev, B. Yogibekov, “On a class Noether theory of two-dimensonal Singular integral equations of the Michlin–Calderon–Zygmund over a bounded domain”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 10, 33–41; Russian Math. (Iz. VUZ), 66:10 (2022), 25–32
Citation in format AMSBIB
\Bibitem{DzhQozYog22}
\by G.~Dzhangibekov, G.~M.~Qoziev, B.~Yogibekov
\paper On a class Noether theory of two-dimensonal Singular integral equations of the Michlin--Calderon--Zygmund over a bounded domain
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 10
\pages 33--41
\mathnet{http://mi.mathnet.ru/ivm9818}
\crossref{https://doi.org/10.26907/0021-3446-2022-10-33-41}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 10
\pages 25--32
\crossref{https://doi.org/10.3103/S1066369X22100048}
Linking options:
  • https://www.mathnet.ru/eng/ivm9818
  • https://www.mathnet.ru/eng/ivm/y2022/i10/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :35
    References:21
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024