Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 10, Pages 3–10
DOI: https://doi.org/10.26907/0021-3446-2022-10-3-10
(Mi ivm9815)
 

On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank $2$

V. I. Glizburga, S. V. Pchelintsevba

a Moscow City Pedagogical University, 4 Vtoroy Selskohoziajstvenny passage, Moscow, 129226 Russia
b Financial University under the Government of the Russian Federation, 49 Leningradsky Ave., Moscow, 125993 Russia
References:
Abstract: It is proved that in free Lie nilpotent n-class algebra $F_2^{(n)}$ of rank $2$ over the field of characteristic $p \ge n\ge 4$ there exists a finite decreasing series of $\rm T$-ideals $T_0 \supseteq T_1\supseteq \dots T_k\supseteq T_{k+1}=0$, such as the $T_0=T^{(3)}$ – $\rm T$-idel, generated by the commutator $[x_1,x_2,x_3]$, and factors $T_i/T_{i+1}$ do not contain the proper $\rm T$-spaces. This implies that every $\rm T$-space of the algebra $F_2^{(n)}$ which contained in the $\rm T$-ideal $ T ^ {(3)} $ has a finite system of generators.
This result is an answer to the question of A.V. Grishin, formulated in the work A.V. Grishin, On $\rm T$-spaces in a relatively free two-generated Lie nilpotent associative algebra of index 4, J. Math. Sci. 191:5 (2013), 686–690.
Keywords: Lie nilpotent algebras of rank $2$, $\rm T$-ideal, $\rm T$-space, finite basisability.
Received: 29.09.2021
Revised: 31.08.2022
Accepted: 28.09.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 10, Pages 1–7
DOI: https://doi.org/10.3103/S1066369X2210005X
Document Type: Article
UDC: 512.554
Language: Russian
Citation: V. I. Glizburg, S. V. Pchelintsev, “On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank $2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 10, 3–10; Russian Math. (Iz. VUZ), 66:10 (2022), 1–7
Citation in format AMSBIB
\Bibitem{GliPch22}
\by V.~I.~Glizburg, S.~V.~Pchelintsev
\paper On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 10
\pages 3--10
\mathnet{http://mi.mathnet.ru/ivm9815}
\crossref{https://doi.org/10.26907/0021-3446-2022-10-3-10}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 10
\pages 1--7
\crossref{https://doi.org/10.3103/S1066369X2210005X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9815
  • https://www.mathnet.ru/eng/ivm/y2022/i10/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :18
    References:21
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024