Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 9, Pages 70–82
DOI: https://doi.org/10.26907/0021-3446-2022-9-70-82
(Mi ivm9813)
 

This article is cited in 8 scientific papers (total in 8 papers)

A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient

U. M. Mirsaburova

Termez State University, 43 Barkamol avlod str., Termez, 190111 Republic of Uzbekistan
Full-text PDF (400 kB) Citations (8)
References:
Abstract: In an unbounded domain, for the Gellerstedt equation with a singular coefficient, uniqueness and existence theorems for the solution of a problem with displacement condition on the internal characteristics and a condition like the Frankl condition on the degeneration segment of the equation are proved.
Keywords: unbounded domain, displacement conditions on internal characteristics, Tricomi singular integral equation with displacement in the "nonsingular", part of the kernel, non-Fredholm operator in the non-characteristic part of the equation, Wiener-Hopf equation, residue, index.
Received: 01.10.2021
Revised: 16.11.2021
Accepted: 23.12.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 9, Pages 58–70
DOI: https://doi.org/10.3103/S1066369X22090079
Document Type: Article
UDC: 517.956
Language: Russian
Citation: U. M. Mirsaburova, “A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9, 70–82; Russian Math. (Iz. VUZ), 66:9 (2022), 58–70
Citation in format AMSBIB
\Bibitem{Mir22}
\by U.~M.~Mirsaburova
\paper A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 9
\pages 70--82
\mathnet{http://mi.mathnet.ru/ivm9813}
\crossref{https://doi.org/10.26907/0021-3446-2022-9-70-82}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 9
\pages 58--70
\crossref{https://doi.org/10.3103/S1066369X22090079}
Linking options:
  • https://www.mathnet.ru/eng/ivm9813
  • https://www.mathnet.ru/eng/ivm/y2022/i9/p70
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :41
    References:23
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024