Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 8, Pages 87–92
DOI: https://doi.org/10.26907/0021-3446-2022-8-87-92
(Mi ivm9805)
 

This article is cited in 4 scientific papers (total in 4 papers)

Brief communications

On a representation of a semigroup $C^*$-algebra as a crossed product

E. V. Lipachevaab

a Chair of Higher Mathematics, Kazan State Power Engineering University, 51 Krasnoselskaya str., Kazan, 420066 Russia
b N.I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, 35 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (364 kB) Citations (4)
References:
Abstract: We construct the semidirect product $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ of the additive group $\mathbb{Z}$ of all integers and the multiplicative semigroup $\mathbb{Z}^{\times}$ of integers without zero relative to a semigroup homomorphism $\varphi$ from $\mathbb{Z}^{\times}$ to the endomorphism semigroup of $\mathbb{Z}$. It is shown that this semidirect product is a normal extension of the semigroup $\mathbb{Z}\times \mathbb{N}$ by the residue class group modulo two, where $\mathbb{N}$ is the multiplicative semigroup of all natural numbers. We study the structures of the reduced semigroup $C^*$-algebras for the semigroups $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ and $\mathbb{Z}\times \mathbb{N}$. We introduce a dynamical system for the semigroup $C^*$-algebra of the semigroup $\mathbb{Z}\times \mathbb{N}$ and its covariant representation. The semigroup $C^*$-algebra of the semigroup $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ is represented as a crossed product of the $C^*$-algebra of the semigroup $\mathbb{Z}\times \mathbb{N}$ by the residue class group modulo two.
Keywords: dynamic system, covariant representation, normal extension of semigroups, semidirect product of semigroups, reduced semigroup $C^*$-algebra, crossed product of a $C^*$-algebra by a group.
Received: 31.05.2022
Revised: 31.05.2022
Accepted: 29.06.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 8, Pages 71–75
DOI: https://doi.org/10.3103/S1066369X22080059
Document Type: Article
UDC: 512.533: 517.986: 517.938
Language: Russian
Citation: E. V. Lipacheva, “On a representation of a semigroup $C^*$-algebra as a crossed product”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 8, 87–92; Russian Math. (Iz. VUZ), 66:8 (2022), 71–75
Citation in format AMSBIB
\Bibitem{Lip22}
\by E.~V.~Lipacheva
\paper On a representation of a semigroup $C^*$-algebra as a crossed product
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 8
\pages 87--92
\mathnet{http://mi.mathnet.ru/ivm9805}
\crossref{https://doi.org/10.26907/0021-3446-2022-8-87-92}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 8
\pages 71--75
\crossref{https://doi.org/10.3103/S1066369X22080059}
Linking options:
  • https://www.mathnet.ru/eng/ivm9805
  • https://www.mathnet.ru/eng/ivm/y2022/i8/p87
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :21
    References:22
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024