Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 7, Pages 3–9
DOI: https://doi.org/10.26907/0021-3446-2022-7-3-9
(Mi ivm9788)
 

This article is cited in 1 scientific paper (total in 1 paper)

The inverse problem for generalized contraharmonic means

T. H. Dinha, C. T. Leb, B. K. Voc

a Troy University, Troy, AL, 36072 USA
b Quy Nhon University, Viet Nam
c University of Finance and Marketing, Ho Chi Minh City, Viet Nam
Full-text PDF (319 kB) Citations (1)
References:
Abstract: In this paper we introduce the generalized contraharmanic mean associated to a Kubo-Ando mean $\sigma$ as
$$ C_\sigma(X, Y) = X\sigma Y - X\sigma^\perp Y, $$
where $\sigma^\perp$ is the dual mean of $\sigma$ and $X, Y$ are positive definite matrices. We show that for a symmetric Kubo-Ando mean $\sigma$ such as $\sigma \ge \sharp$ and for any positive definite matrices $A \ge B$ the inverse problem
\begin{equation*} A=C_\sigma(X, Y), \ \ B=X^{1/2}(X^{-1/2}YX^{-1/2})^{1/2}X^{1/2} \end{equation*}
has a positive solution $(X, Y)$.
Keywords: Kubo-Ando means, geometric mean, generalized contraharmonic mean, inverse problem, Brouwer's fixed point theorem, non-linear matrix equations.
Funding agency Grant number
Troy University
Received: 13.10.2021
Revised: 17.05.2022
Accepted: 29.06.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 7, Pages 1–6
DOI: https://doi.org/10.3103/S1066369X22070027
Document Type: Article
UDC: 517
Language: Russian
Citation: T. H. Dinh, C. T. Le, B. K. Vo, “The inverse problem for generalized contraharmonic means”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 7, 3–9; Russian Math. (Iz. VUZ), 66:7 (2022), 1–6
Citation in format AMSBIB
\Bibitem{DinLeVo22}
\by T.~H.~Dinh, C.~T.~Le, B.~K.~Vo
\paper The inverse problem for generalized contraharmonic means
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 7
\pages 3--9
\mathnet{http://mi.mathnet.ru/ivm9788}
\crossref{https://doi.org/10.26907/0021-3446-2022-7-3-9}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 7
\pages 1--6
\crossref{https://doi.org/10.3103/S1066369X22070027}
Linking options:
  • https://www.mathnet.ru/eng/ivm9788
  • https://www.mathnet.ru/eng/ivm/y2022/i7/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :27
    References:34
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024