Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 4, Pages 49–66
DOI: https://doi.org/10.26907/0021-3446-2022-4-49-66
(Mi ivm9768)
 

This article is cited in 2 scientific papers (total in 2 papers)

Integral representation of the Mittag-Leffler function

V. V. Saenko

Ulyanovsk State University, 42 L. Tolstoy str., Ulyanovsk, 432017 Russia
Full-text PDF (544 kB) Citations (2)
References:
Abstract: Generalization of the integral representation of the gamma function has been obtained, which shows that the Hankel contour assumes rotation in the complex plane. The range of admissible values for the contour rotation angle is set. Using this integral representation, generalization of the integral representation of the Mittag-Leffler function has been obtained that expresses the value of this function in terms of the contour integral.
Keywords: gamma-function, Mittag-Leffler function.
Funding agency Grant number
Russian Foundation for Basic Research 19-44-730005
20-07-00655
Received: 23.07.2021
Revised: 23.07.2021
Accepted: 23.12.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 4, Pages 43–58
DOI: https://doi.org/10.3103/S1066369X22040053
Document Type: Article
UDC: 517.581: 517.588
Language: Russian
Citation: V. V. Saenko, “Integral representation of the Mittag-Leffler function”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 4, 49–66; Russian Math. (Iz. VUZ), 66:4 (2022), 43–58
Citation in format AMSBIB
\Bibitem{Sae22}
\by V.~V.~Saenko
\paper Integral representation of the Mittag-Leffler function
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 4
\pages 49--66
\mathnet{http://mi.mathnet.ru/ivm9768}
\crossref{https://doi.org/10.26907/0021-3446-2022-4-49-66}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 4
\pages 43--58
\crossref{https://doi.org/10.3103/S1066369X22040053}
Linking options:
  • https://www.mathnet.ru/eng/ivm9768
  • https://www.mathnet.ru/eng/ivm/y2022/i4/p49
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :37
    References:21
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024