Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 3, Pages 61–70
DOI: https://doi.org/10.26907/0021-3446-2022-3-61-70
(Mi ivm9760)
 

Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions

Kh. M. Khuromonov

Institute of Tourism, Entrepreneurship and Service, 48/5 Borbada Ave., Dushanbe, 734055 Republic of Tajikistan
References:
Abstract: In this paper, exact constants in Jackson–Stechkin type inequalities for characterizing the smoothness of the functions $\Lambda_{m}(f), \ m\in\mathbb{N},$ defined by averaging the norms of finite differences of the $m$-th order of the function $f$ over the argument $z=\rho e^{it}$ analytic in the unit disc belonging $U:=\{z:|z|<1\}$ to the Bergman space $B_{2}$ are found. For the classes of analytic functions in the disk $U$, defined by the characteristics of smoothness $\Lambda_{m}(f)$ and $\Phi$ majorants, satisfying a number of conditions, the exact values of various $n$-widths are calculated.
Keywords: generalized modulus of continuity, Jackson–Stechkin type inequality, best approximation, upper boundarie, $n$-widths.
Received: 01.06.2021
Revised: 09.08.2021
Accepted: 29.09.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 3, Pages 50–58
DOI: https://doi.org/10.3103/S1066369X22030045
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Kh. M. Khuromonov, “Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3, 61–70; Russian Math. (Iz. VUZ), 66:3 (2022), 50–58
Citation in format AMSBIB
\Bibitem{Khu22}
\by Kh.~M.~Khuromonov
\paper Exact inequalities between the best polynomial approximations and averaged norms of finite differences in the $B_{2}$ space and widths of some classes of functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 3
\pages 61--70
\mathnet{http://mi.mathnet.ru/ivm9760}
\crossref{https://doi.org/10.26907/0021-3446-2022-3-61-70}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 3
\pages 50--58
\crossref{https://doi.org/10.3103/S1066369X22030045}
Linking options:
  • https://www.mathnet.ru/eng/ivm9760
  • https://www.mathnet.ru/eng/ivm/y2022/i3/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024