Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 3, Pages 21–27
DOI: https://doi.org/10.26907/0021-3446-2022-3-21-27
(Mi ivm9756)
 

On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space

M. Yu. Kokurina, A. B. Bakushinskyab

a Mari State University, 1 Lenin sqr., Yoshkar-Ola, 424001 Russia
b Federal Research Center ''Computer Science and Control'' of the Russian Academy of Sciences, Institute for Systems Analysis, 9 60-letiya Oktyabrya Ave., Moscow, 117312 Russia
References:
Abstract: It is shown that for a wide class of ill-posed problems of finding the value of a discontinuous operator on an approximate element in Banach space, the level of accuracy of the resulting solution cannot exceed in order the error level of the input data. A similar result is established for a class of nonlinear operator equations with an approximate right-hand side. The classes of problems for which these orders coincide are specified.
Keywords: ill-posed problem, operator equation, error, accuracy estimate, Banach space.
Funding agency Grant number
Russian Science Foundation 20-11-20085
Received: 11.05.2021
Revised: 19.05.2021
Accepted: 29.06.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 3, Pages 16–21
DOI: https://doi.org/10.3103/S1066369X22030057
Document Type: Article
UDC: 517.988
Language: Russian
Citation: M. Yu. Kokurin, A. B. Bakushinsky, “On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3, 21–27; Russian Math. (Iz. VUZ), 66:3 (2022), 16–21
Citation in format AMSBIB
\Bibitem{KokBak22}
\by M.~Yu.~Kokurin, A.~B.~Bakushinsky
\paper On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 3
\pages 21--27
\mathnet{http://mi.mathnet.ru/ivm9756}
\crossref{https://doi.org/10.26907/0021-3446-2022-3-21-27}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 3
\pages 16--21
\crossref{https://doi.org/10.3103/S1066369X22030057}
Linking options:
  • https://www.mathnet.ru/eng/ivm9756
  • https://www.mathnet.ru/eng/ivm/y2022/i3/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024