Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 3, Pages 13–20
DOI: https://doi.org/10.26907/0021-3446-2022-3-13-20
(Mi ivm9755)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Visser's inequality concerning coefficient estimates for a polynomial

S. Gulzara, N. A. Ratherb, M. Sh. Wanib

a Government College for Engineering and Technology, India
b University of Kashmir, Srinagar-190006, India
Full-text PDF (384 kB) Citations (1)
References:
Abstract: If $P(z)=\sum\limits_{j=0}^{n}a_jz^j$ is a polynomial of degree $n$ having no zero in $|z|<1,$ then it was recently proved that for every $p\in[0,+\infty]$ and $s=0,1,\ldots,n-1,$
\begin{align*} \left\|a_nz+\frac{a_s}{\binom{n}{s}}\right\|_{p}\leq \frac{\left\|z+\delta_{0s}\right\|_p}{\left\|1+z\right\|_p}\left\|P\right\|_{p}, \end{align*}
where $\delta_{0s}$ is the Kronecker delta. In this paper, we consider the class of polynomials having no zero in $|z|<\rho,$ $\rho\geq 1$ and obtain some generalizations of above inequality.
Keywords: polynomial, Visser's inequality, inequality in the complex domain.
Received: 15.04.2021
Revised: 04.07.2021
Accepted: 29.09.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 3, Pages 9–15
DOI: https://doi.org/10.3103/S1066369X22030033
Document Type: Article
UDC: 517
Language: Russian
Citation: S. Gulzar, N. A. Rather, M. Sh. Wani, “On Visser's inequality concerning coefficient estimates for a polynomial”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3, 13–20; Russian Math. (Iz. VUZ), 66:3 (2022), 9–15
Citation in format AMSBIB
\Bibitem{GulRatWan22}
\by S.~Gulzar, N.~A.~Rather, M.~Sh.~Wani
\paper On Visser's inequality concerning coefficient estimates for a polynomial
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 3
\pages 13--20
\mathnet{http://mi.mathnet.ru/ivm9755}
\crossref{https://doi.org/10.26907/0021-3446-2022-3-13-20}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 3
\pages 9--15
\crossref{https://doi.org/10.3103/S1066369X22030033}
Linking options:
  • https://www.mathnet.ru/eng/ivm9755
  • https://www.mathnet.ru/eng/ivm/y2022/i3/p13
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :24
    References:38
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024