Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 2, Pages 29–42
DOI: https://doi.org/10.26907/0021-3446-2022-2-29-42
(Mi ivm9749)
 

A posteriori stopping in iteratively regularized Gauss–Newton type methods for approximating quasi-solutions of irregular operator equations

M. M. Kokurin

Mari State University, 1 Lenin Sqr., Yoshkar-Ola, 424000 Russia
References:
Abstract: We consider a class of iteratively regularized Gauss–Newton type methods for approximating quasi-solutions of irregular nonlinear operator equations in Hilbert spaces. We assume that the Frechet derivative of the problem operator at the desired quasi-solution has a closed range. We propose an a-posteriori stopping rule for the considered methods and get an accuracy estimate which is proportional to the error level of input data.
Keywords: nonlinear operator equation, irregular equation, ill-posed problem, Gauss–Newton method, iterative regularization, quasi-solution, Hilbert space, closed range, a-posteriori stopping rule, accuracy estimate.
Funding agency Grant number
Russian Science Foundation 20-11-20085
Received: 14.04.2021
Revised: 10.07.2021
Accepted: 29.09.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 2, Pages 24–35
DOI: https://doi.org/10.3103/S1066369X22020062
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: M. M. Kokurin, “A posteriori stopping in iteratively regularized Gauss–Newton type methods for approximating quasi-solutions of irregular operator equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 2, 29–42; Russian Math. (Iz. VUZ), 66:2 (2022), 24–35
Citation in format AMSBIB
\Bibitem{Kok22}
\by M.~M.~Kokurin
\paper A posteriori stopping in iteratively regularized Gauss--Newton type methods for approximating quasi-solutions of irregular operator equations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 2
\pages 29--42
\mathnet{http://mi.mathnet.ru/ivm9749}
\crossref{https://doi.org/10.26907/0021-3446-2022-2-29-42}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=842327}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 2
\pages 24--35
\crossref{https://doi.org/10.3103/S1066369X22020062}
Linking options:
  • https://www.mathnet.ru/eng/ivm9749
  • https://www.mathnet.ru/eng/ivm/y2022/i2/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :15
    References:25
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024