Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 12, Pages 9–22
DOI: https://doi.org/10.26907/0021-3446-2021-12-9-22
(Mi ivm9733)
 

This article is cited in 5 scientific papers (total in 5 papers)

Lie algebras of projective motions of five-dimensional $h$-spaces $H_{221}$ of type $\{221\}$

A. V. Aminova, D. R. Khakimov

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (352 kB) Citations (5)
References:
Abstract: We study five-dimensional pseudo-Riemannian $h$-spaces $H_{221}$ of type $\{221\}$. Necessary and sufficient conditions are determined under which $H_{221}$ is a space of constant (zero) curvature. Non-homothetical projective motions in $ H_{221} $ of non-constant curvature are found, homotheties and isometries of the indicated spaces are investigated. Dimensions, basic elements, and structure equations of maximal projective Lie algebras acting in $H_{221}$ of non-constant curvature are determined. As a result, the classification of $h$-spaces $H_{221}$ of type $\{221\}$ by (non-homothetical) Lie algebras of infinitesimal projective and affine transformations is obtained.
Keywords: five-dimensional pseudo-Riemannian manifold, $h$-space $H_ {221}$ of type $\{221\},$ non-homo-thetical projective motion, projective Lie algebra.
Received: 13.02.2021
Revised: 13.02.2021
Accepted: 30.03.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 12, Pages 6–19
DOI: https://doi.org/10.3103/S1066369X21120021
Document Type: Article
UDC: 514.763: 514.8
Language: Russian
Citation: A. V. Aminova, D. R. Khakimov, “Lie algebras of projective motions of five-dimensional $h$-spaces $H_{221}$ of type $\{221\}$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12, 9–22; Russian Math. (Iz. VUZ), 65:12 (2021), 6–19
Citation in format AMSBIB
\Bibitem{AmiKha21}
\by A.~V.~Aminova, D.~R.~Khakimov
\paper Lie algebras of projective motions of five-dimensional $h$-spaces $H_{221}$ of type $\{221\}$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 12
\pages 9--22
\mathnet{http://mi.mathnet.ru/ivm9733}
\crossref{https://doi.org/10.26907/0021-3446-2021-12-9-22}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 12
\pages 6--19
\crossref{https://doi.org/10.3103/S1066369X21120021}
Linking options:
  • https://www.mathnet.ru/eng/ivm9733
  • https://www.mathnet.ru/eng/ivm/y2021/i12/p9
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :87
    References:35
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024