Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 10, Pages 15–36
DOI: https://doi.org/10.26907/0021-3446-2021-10-15-36
(Mi ivm9718)
 

On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function

V. E. Kruglov

Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., Odessa, 65082 Ukraine
References:
Abstract: In this paper, a modified solution of the Riemann boundary value problem on a Riemann surface (R.S.) of an algebraic function kind $\rho$ is proposed. This allowed finding the number l of linearly independent algebraic functions (LIAF), that are multiples of a fractional divisor $Q$, to reduce to finding the number of LIAF that are multiples of an integer divisor $J$ (${\rm ord}\, J = \rho$). It provides a solution of the Jacobi inversion problem obtained in this paper. In this paper, we study the case when the exponents of the normal basis elements coincide, and the problem of finding the number of LIAF, multiples of an integer divisor, is solved. The definitions of conjugate points of R.S. and a hyperorder of a whole divisor are introduced. Depending on the structure of the divisor $J$, exact formulae are obtained for the number $l$, expressed in terms of the divisor $Q$ order, the hyperorder of the divisor $J$, and the numbers $\rho$ and $n$, where $n$ is the number of sheets of algebraic function R.S.
Keywords: Riemann boundary value problem, Riemann surface of an algebraic function, rank of a matrix.
Received: 10.12.2020
Revised: 10.12.2020
Accepted: 30.03.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 10, Pages 10–30
DOI: https://doi.org/10.3103/S1066369X21100029
Document Type: Article
UDC: 517.948: 511.24
Language: Russian
Citation: V. E. Kruglov, “On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 10, 15–36; Russian Math. (Iz. VUZ), 65:10 (2021), 10–30
Citation in format AMSBIB
\Bibitem{Kru21}
\by V.~E.~Kruglov
\paper On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 10
\pages 15--36
\mathnet{http://mi.mathnet.ru/ivm9718}
\crossref{https://doi.org/10.26907/0021-3446-2021-10-15-36}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 10
\pages 10--30
\crossref{https://doi.org/10.3103/S1066369X21100029}
Linking options:
  • https://www.mathnet.ru/eng/ivm9718
  • https://www.mathnet.ru/eng/ivm/y2021/i10/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024