|
Generalized Lie-type derivations of alternative algebras
B. L. M. Ferreiraa, G. C. De Moraesb a Federal University of Technology, 800 Prof. Laura Pacheco Bastos Ave., Guarapuava, 85053-510 Brazil
b Federal University of ABC, 5001 dos Estados Ave., Santo André, 09210-580 Brazil
Abstract:
In this paper, we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the following result: "If F:A→A is a generalized Lie n-derivation associated with a Lie n-derivation D, then a linear map H=F−D satisfies H(pn(x1,x2,…,xn))=pn(H(x1),x2,…,xn) for all x1,x2,…,xn∈A". Thus, if A is a unital alternative algebra with a nontrivial idempotent e1 satisfying certain conditions, then a generalized Lie-type derivation F:A→A is of the form F(x)=λx+Ξ(x) for all x∈A , where λ∈Z(A) and Ξ:A→A is a Lie-type derivation.
Keywords:
alternative algebra, generalized Lie derivation.
Received: 16.09.2020 Revised: 16.11.2020 Accepted: 24.12.2020
Citation:
B. L. M. Ferreira, G. C. De Moraes, “Generalized Lie-type derivations of alternative algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 9, 40–48; Russian Math. (Iz. VUZ), 65:9 (2021), 33–40
Linking options:
https://www.mathnet.ru/eng/ivm9712 https://www.mathnet.ru/eng/ivm/y2021/i9/p40
|
Statistics & downloads: |
Abstract page: | 145 | Full-text PDF : | 45 | References: | 31 | First page: | 2 |
|