|
Generalized Lie-type derivations of alternative algebras
B. L. M. Ferreiraa, G. C. De Moraesb a Federal University of Technology, 800 Prof. Laura Pacheco Bastos Ave., Guarapuava, 85053-510 Brazil
b Federal University of ABC, 5001 dos Estados Ave., Santo André, 09210-580 Brazil
Abstract:
In this paper, we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the following result: "If $F:A\to A$ is a generalized Lie $n$-derivation associated with a Lie $n$-derivation $D$, then a linear map $H=F-D$ satisfies $H(p_n(x_1,x_2,\ldots ,x_n)) =p_n(H(x_1),x_2,\ldots ,x_n)$ for all $x_1,x_2,\ldots ,x_n\in A$". Thus, if $A$ is a unital alternative algebra with a nontrivial idempotent $e_1$ satisfying certain conditions, then a generalized Lie-type derivation $F : A \rightarrow A$ is of the form $F(x) = \lambda x + \Xi(x)$ for all $x \in A$ , where $\lambda \in Z(A)$ and $\Xi : A \rightarrow A$ is a Lie-type derivation.
Keywords:
alternative algebra, generalized Lie derivation.
Received: 16.09.2020 Revised: 16.11.2020 Accepted: 24.12.2020
Citation:
B. L. M. Ferreira, G. C. De Moraes, “Generalized Lie-type derivations of alternative algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 9, 40–48; Russian Math. (Iz. VUZ), 65:9 (2021), 33–40
Linking options:
https://www.mathnet.ru/eng/ivm9712 https://www.mathnet.ru/eng/ivm/y2021/i9/p40
|
Statistics & downloads: |
Abstract page: | 117 | Full-text PDF : | 36 | References: | 24 | First page: | 2 |
|