Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 8, Pages 46–55
DOI: https://doi.org/10.26907/0021-3446-2021-8-46-55
(Mi ivm9702)
 

This article is cited in 5 scientific papers (total in 5 papers)

Nondegenerate canonical solutions of one system of functional equations

V. A. Kyrov, G. G. Mikhailichenko

Gorno-Altaisk State University, 1 Lenkin str., Gorno-Altaisk, 649000 Russia
Full-text PDF (311 kB) Citations (5)
References:
Abstract: In this paper, we solve a special system of functional equations arising in the problem of embedding an additive two-metric phenomenologically symmetric geometry of two sets of rank (2,2) into a multiplicative two-metric phenomenologically symmetric geometry of two sets of rank (3,2). We are looking for non-degenerate solutions of this system, which are very difficult to determine in general terms. However, the problem of determining the set of its fundamental solutions associated with a finite number of Jordan forms of nonzero second-order matrices turned out to be much simpler and more meaningful in the mathematical sense. The methods developed by the authors can be applied to other systems of functional equations, the nondegenerate solutions of which prove the possibility of mutual embedding of some geometries of two sets.
Keywords: geometry of two sets, functional equation, Jordan form of matrices.
Received: 27.08.2020
Revised: 27.08.2020
Accepted: 24.12.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 8, Pages 40–48
DOI: https://doi.org/10.3103/S1066369X21080053
Document Type: Article
UDC: 517.912: 514.1
Language: Russian
Citation: V. A. Kyrov, G. G. Mikhailichenko, “Nondegenerate canonical solutions of one system of functional equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8, 46–55; Russian Math. (Iz. VUZ), 65:8 (2021), 40–48
Citation in format AMSBIB
\Bibitem{KyrMik21}
\by V.~A.~Kyrov, G.~G.~Mikhailichenko
\paper Nondegenerate canonical solutions of one system of functional equations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 8
\pages 46--55
\mathnet{http://mi.mathnet.ru/ivm9702}
\crossref{https://doi.org/10.26907/0021-3446-2021-8-46-55}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 8
\pages 40--48
\crossref{https://doi.org/10.3103/S1066369X21080053}
Linking options:
  • https://www.mathnet.ru/eng/ivm9702
  • https://www.mathnet.ru/eng/ivm/y2021/i8/p46
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024