Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 6, Pages 25–34
DOI: https://doi.org/10.26907/0021-3446-2021-6-25-34
(Mi ivm9683)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic lines on pseudospheres and the angle of parallelism

A. V. Kostin

Elabuga Institute of Kazan Federal University, 89 Kazanskaya str., Elabuga, 423600 Russia
Full-text PDF (359 kB) Citations (3)
References:
Abstract: The angle between the asymptotic lines — and generally between the lines of the Chebyshev network — on surfaces of constant curvature is usually analytically interpreted as a solution of the second-order partial differential equation. For surfaces of constant negative curvature in Euclidean space, this is the sine-Gordon equation. Conversely, surfaces of constant negative curvature are used to construct and interpret solutions to the sine-Gordon equation. This article shows that the angle between the asymptotic lines on the pseudospheres of Euclidean and pseudo-Euclidean spaces can be interpreted differently, namely, to interpret it as the doubled angle of parallelism of the Lobachevsky plane or its ideal region, locally having the geometry of the de Sitter plane, respectively.
Keywords: asymptotic line, Lobachevsky plane, de Sitter plane, Minkowski space, pseudosphere.
Received: 19.03.2020
Revised: 19.03.2020
Accepted: 30.03.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 6, Pages 21–28
DOI: https://doi.org/10.3103/S1066369X21060037
Document Type: Article
UDC: 514.13
Language: Russian
Citation: A. V. Kostin, “Asymptotic lines on pseudospheres and the angle of parallelism”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6, 25–34; Russian Math. (Iz. VUZ), 65:6 (2021), 21–28
Citation in format AMSBIB
\Bibitem{Kos21}
\by A.~V.~Kostin
\paper Asymptotic lines on pseudospheres and the angle of parallelism
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 6
\pages 25--34
\mathnet{http://mi.mathnet.ru/ivm9683}
\crossref{https://doi.org/10.26907/0021-3446-2021-6-25-34}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 6
\pages 21--28
\crossref{https://doi.org/10.3103/S1066369X21060037}
Linking options:
  • https://www.mathnet.ru/eng/ivm9683
  • https://www.mathnet.ru/eng/ivm/y2021/i6/p25
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025