Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 3, Pages 3–14
DOI: https://doi.org/10.26907/0021-3446-2021-3-3-14
(Mi ivm9653)
 

This article is cited in 3 scientific papers (total in 3 papers)

Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, 24 Universitetskaya str., Donetsk, 283001 Republic of Ukraine
Full-text PDF (423 kB) Citations (3)
References:
Abstract: Let $\mathbb{R}^n$ be an Euclidean space of dimension $n\geq 2$. For a domain $G\subset \mathbb{R}^n$, we denote by $V_r(G)$ the set of functions $f\in L_{\mathrm{loc}}(G)$ having zero integrals over all closed balls of radius $r$ contained in $G$ (if the domain $G$ does not contain such balls, then we set $V_r(G)=L_{\mathrm{loc}}(G)$). Let $E$ be a nonempty subset of $\mathbb{R}^n$. In this paper we study the following questions related to with the extension problem.
1) Under what conditions given on $E$ continuous function can be extended to the whole space $\mathbb{R}^n$ to a continuous function of class $V_r(\mathbb{R}^n)$?
2) If the above extension exists, obtain growth estimates continued function at infinity.
Theorem 1 of this paper shows that for a wide class of continuous functions on segment $E$ defined in terms of the modulus of continuity there exists extension to a bounded function of class $(V_r\cap C)(\mathbb{R}^n)$ regardless of the length of segment $E$. A similar result is not true for open sets $E$ with a diameter greater than $2r$ even without conditions for extension growth. Theorem 1 also contains an estimate of the velocity decrease of the extended function at infinity in directions orthogonal to the segment $E$.
As Theorem 2 shows, in the case of a space with odd dimension $n$ Theorem 1 holds for any function continuous on $E$ with another growth estimate. The method of proving Theorems 1 and 2 allows one to obtain similar results for functions with zero integrals over all spheres of fixed radius (in this case, an analog of Theorem 2 holds for spaces with even dimension).
Keywords: spherical and ball means, extension problem, trigonometric series.
Received: 21.04.2020
Revised: 04.06.2020
Accepted: 29.06.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 3, Pages 1–11
DOI: https://doi.org/10.3103/S1066369X21030014
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3, 3–14; Russian Math. (Iz. VUZ), 65:3 (2021), 1–11
Citation in format AMSBIB
\Bibitem{VolVol21}
\by V.~V.~Volchkov, Vit.~V.~Volchkov
\paper Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 3
\pages 3--14
\mathnet{http://mi.mathnet.ru/ivm9653}
\crossref{https://doi.org/10.26907/0021-3446-2021-3-3-14}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 3
\pages 1--11
\crossref{https://doi.org/10.3103/S1066369X21030014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000638880500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104271679}
Linking options:
  • https://www.mathnet.ru/eng/ivm9653
  • https://www.mathnet.ru/eng/ivm/y2021/i3/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :62
    References:34
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024