Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 1, Pages 52–63
DOI: https://doi.org/10.26907/0021-3446-2021-1-52-63
(Mi ivm9640)
 

$n$-Torsion clean and almost $n$-torsion clean matrix rings

A. Cîmpeana, P. Danchevb

a “Babeş-Bolyai” University, 1 Mihail Kogălniceanu str., Cluj-Napoca, 400084 Romania
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences 8 Acad. G. Bonchev str., Sofia, 1113 Bulgaria
References:
Abstract: We (completely) determine those natural numbers $n$ for which the full matrix ring $\mathbb{M}_n(\mathbb{F}_2)$ and the triangular matrix ring $\mathbb{T}_n(\mathbb{F}_2)$ over the two elements field $\mathbb{F}_2$ are either $n$-torsion clean or are almost $n$-torsion clean, respectively. These results somewhat address and settle a question, recently posed by Danchev-Matczuk in Contemp. Math. (2019) as well as they supply in a more precise aspect the nil-cleanness property of the full matrix $n\times n$ ring $\mathbb{M}_n(\mathbb{F}_2)$ for all naturals $n\geq 1$, established in Linear Algebra & Appl. (2013) by Breaz-Cǎlugǎreanu-Danchev-Micu and again in Linear Algebra & Appl. (2018) by Šter as well as in Indag. Math. (2019) by Shitov.
Keywords: $n$-torsion clean ring, full matrix ring, triangular matrix ring, polynomial, simple field.
Funding agency Grant number
Bulgarian National Science Fund KP-06 № 32/1
Received: 28.03.2020
Revised: 17.08.2020
Accepted: 01.10.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 1, Pages 47–56
DOI: https://doi.org/10.3103/S1066369X21010047
Bibliographic databases:
Document Type: Article
UDC: 512.6
Language: Russian
Citation: A. Cîmpean, P. Danchev, “$n$-Torsion clean and almost $n$-torsion clean matrix rings”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1, 52–63; Russian Math. (Iz. VUZ), 65:1 (2021), 47–56
Citation in format AMSBIB
\Bibitem{CimDan21}
\by A.~C{\^\i}mpean, P.~Danchev
\paper $n$-Torsion clean and almost $n$-torsion clean matrix rings
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 1
\pages 52--63
\mathnet{http://mi.mathnet.ru/ivm9640}
\crossref{https://doi.org/10.26907/0021-3446-2021-1-52-63}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 1
\pages 47--56
\crossref{https://doi.org/10.3103/S1066369X21010047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000618239300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100934479}
Linking options:
  • https://www.mathnet.ru/eng/ivm9640
  • https://www.mathnet.ru/eng/ivm/y2021/i1/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025